Calculation of the aboveground carbon stocks with satellite data and statistical models integrated into the climatic parameters in the Alborz Mountain forests (northern Iran)

https://doi.org/10.17221/107/2019-JFSCitation:Ghanbari Motlagh M., Babaie Kafaky S., Mataji A., Akhavan R. (2019): Calculation of the aboveground carbon stocks with satellite data and statistical models integrated into the climatic parameters in the Alborz Mountain forests (northern Iran). J. For. Sci., 65: 493-503.
download PDF

The forest ecosystems of northern Iran in the Alborz Mountains with a wide distribution range have variations in the composition and types of the plants, soil, structure, carbon stocks and climatic conditions. This study investigated the use of a satellite database and climatic parameters in estimating the carbon reserves. Three regions were selected for the distribution range of these forests. The data of 4 climatic parameters (MAP, MHR, MAE and MAT) were modelled based on the relationship with an elevation gradient. 5 spectral vegetation indices (RVI, NDVI, SR, NDGI, DVI and TVI) and near-infrared band (NIR) extracted from the satellite data and the aboveground carbon data of these forests were modelled based on a regression analysis. Finally, the best model of the relationship between the climate variables and the carbon stocks and the satellite indices was obtained from the multivariate linear regression equation and the R2 coefficient. Accordingly, the most influential climatic parameters on the carbon stocks of these forests were precipitation, temperature, and also the most significant indices were NDVI, RVI and NIR band. This research is an attempt to model the calculations of the aboveground carbon in the forests of northern Iran in relation to the climatic parameters using satellite imagery.

References:
Abdollahnejad A., Panagiotidis D., Joybari S.S., Surový P. (2017): Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data. MDPI AG. Forests, 8: 19. https://doi.org/10.3390/f8020042
 
Akhani H., Djamali M., Ghorbanalizadeh A. Ramezani, E. (2010): Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42: 231–258.
 
Álvarez-Dávila E., Cayuela L., González-Caro S., Aldana A.M., Stevenson P.R., Phillips O., Cogollo Á., Peñuela M.C., von Hildebrand P., Jiménez E. Melo O., Londoño-Vega A.C., Mendoza I., Velásquez O., Fernández F., Serna M., Velázquez-Rua C., Benítez D., Rey-Benayas J.M. (2017): Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PloS One,12: e0171072. https://doi.org/10.1371/journal.pone.0171072
 
Ardakani M.R. (2018): Ecology. Tehran, Tehran University: 340. (in Persian)
 
Baccini A., Friedl M.A., Woodcock C.E. Warbington R. (2004): Forest biomass estimation over regional scales using multisource data. Geophysical research letters, 31: 4. https://doi.org/10.1029/2004GL019782
 
Birth G.S. and McVey G.R. (1968): Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agronomy Journal, 60: 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x
 
Chamard P., Courel M.F., Ducousso M., Guénégou M.C., Le Rhun J., Levasseur J.E., Loisel C., Togola M. (1991): Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. Télédétection et Cartographie, Presses de l'Universite de Quebec, Montreal; Canada, AUPELF-UREF: 203–209.
 
Chen L., Wangc Y., Ren C., Zhang B., Wang Z. (2019a): Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Forest Ecology and Management, 447: 12–25. https://doi.org/10.1016/j.foreco.2019.05.057
 
Chen L., Wang Y., Ren C., Zhang B. Wang Z. (2019b): Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sensing, 11: 414. https://doi.org/10.3390/rs11040414
 
Chenge I.B., Osho J.S., (2018): Mapping tree aboveground biomass and carbon in Omo Forest Reserve Nigeria using Landsat 8 OLI data. Southern Forests: A Journal of Forest Science, 80: 341–350. https://doi.org/10.2989/20702620.2018.1463150
 
Dube T., Mutanga O. (2016): The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 119: 415–425.  https://doi.org/10.1016/j.isprsjprs.2016.06.017
 
FAO (2015): Global Forest Resources Assessment, how are the world’s forests changing? Second edition. Food and Agriculture Organization of the United Nations, Rome: 54.
 
Faraji F., Mataji A., Babaei Kafaki S., Vahedi A.A. (2015): The relationship between plant diversity and above-ground biomass changes in Fagus orientalis L. forests (Case study: Hajikola-Tirankoli, Sari). Iranian Forest Journal, Iranian Forestry Association. 7: 151–165. (in Persian)
 
Farajzadeh M. (2015): Climatology techniques. Publishing of Organization for the Study and Compilation of Humanities Books of Universities: 288.
 
Hosseini S.M. (2010): Forest operations management and timber products in the Hyrcanian forests of Iran. FORMEC in Forest engineering: Meeting the needs of the society and the environment, July 11 – 14, 2010, Padova – Italy: 11–14.
 
IPCC (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF). Available at: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm
 
Jafari S.M., Zarre S. Alavipanah S.K. (2013): Woody species diversity and forest structure from lowland to montane forest in Hyrcanian forest ecoregion. Journal of Mountain Science, 10: 609–620. https://doi.org/10.1007/s11629-013-2652-2
 
Jordan C.F. (1969): Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50: 663–666. https://doi.org/10.2307/1936256
 
Jourgholami M. and Majnounian B. (2011): Harvesting systems in Hyrcanian forest, Iran; limitations and approaches. The forest engineering network (Formec, Austria, Proceedings) October: 9–13.
 
Kalbi S., Fallah A., Shataee SH. (2014): Estimation of forest attributes in the Hyrcanian forests, comparison of advanced space-borne thermal emission and reflection radiometer and satellite poure I’observation de la terre-high resolution grounding data by multiple linear, and classification and regression tree regression models. Journal of Applied Remote Sensing, 8: 083632 (2014). https://doi.org/10.1117/1.JRS.8.083632
 
Lu D., Chen Q., Wang G., Liu L., Li G., Moran E. (2016): A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9: 63–105. https://doi.org/10.1080/17538947.2014.990526
 
Luther J.E., Fournier R.A., Hall R.J., Ung C.H., Guindon L., Piercey D.E., Lambert M.C. Beaudoin A. (2002): A strategy for mapping Canada’s forest biomass with Landsat TM imagery. In Geoscience and Remote Sensing Symposium, 2002. IGARSS’02. IEEE International, 3: 1312–1315.
 
Marshall A.R., Willcock S., Platts P.J., Lovett J.C., Balmford A., Burgess N.D., Latham J.E., Munishi P.K.T., Salter R., Shirima D.D., Lewis S.L. (2012): Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Journal of Biological Conservation, 154: 20–33. https://doi.org/10.1016/j.biocon.2012.03.017
 
Marvie-Mohadjer M.R. (2012): Silviculture. Tehran, University of Tehran Press: 400.
 
Mirajhorlou K., Akhavan R. (2017): Forest density and orchard classification in Hyrcanian forests of Iran using Landsat 8 data. Journal of Forest Science, 63: 355–362.
 
Motlagh M.G., Kafaky S.B., Mataji A., Akhavan R. (2018): Estimating and mapping forest biomass using regression models and Spot-6 images (case study: Hyrcanian forests of north of Iran). Environmental Monitoring and Assessment, 190: 352. https://doi.org/10.1007/s10661-018-6725-0
 
Naqinezhad A., Zarezadeh S. (2013): A contribution to flora, life form and chorology of plants in Noor and Sisangan lowland forests. Journal of Taxonomy and Biosistematics, 4: 31–44.
 
Nyamugama A., Kakembo V. (2015): Estimation and monitoring of aboveground carbon stocks using spatial technology. South African Journal of Science, 111: 7.  https://doi.org/10.17159/sajs.2015/20140170
 
Ostadhashemi R., Rostami Shahraji T., Roehle H., Mohammadi Limaei S. (2014): Estimation of biomass and carbon storage of tree plantations in northern Iran. Journal of Forest Science, 60: 363–371. https://doi.org/10.17221/55/2014-JFS
 
Perry C.R., Lautenschlager L.F. (1984): Functional equivalence of spectral vegetation indices. Journal of Remote Sensing of Environment. 14: 169–182. https://doi.org/10.1016/0034-4257(84)90013-0
 
Poorzady M., Bakhtiari F. (2009): Spatial and temporal changes of Hyrcanian forest in Iran. iForest-Biogeosciences and Forestry, 2: 198. https://doi.org/10.3832/ifor0515-002
 
Rana B.S., Singh S.P. Singh R.P. (1989): Biomass and net primary productivity in Central Himalayan forests along an altitudinal gradient. Forest ecology and management, 27: 199–218. https://doi.org/10.1016/0378-1127(89)90107-2
 
Rouse Jr.J., Haas R.H., Schell J.A., Deering D.W. (1974): Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite-1 Symposium. I: NASA, Washington, DC: 309–317.
 
Sagheb-Talebi K., Sajedi T. Pourhashemi M. (2014): Forests of Iran: A Treasure from the Past, a Hope for the Future, 10: 39–151.
 
Sharifi A., Amini J. Pourshakouri F. (2013): Allometric Model Development for Above-Ground Biomass Estimation in Hyrcanian Forests of Iran. World Applied Sciences Journal, 28: 1322–1330.
 
Siadati S., Moradi H., Attar F., Etemad V., Hamzeh’ee B.E.H.N.A.M. Naqinezhad A., (2010): Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa, 7: 1–18.
 
Tucker C.J. (1979): Red and photographic infrared linear combinations for monitoring vegetation. Journal of remote sensing of Environment. 8: 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
 
Vafaei S., Soosani J., Adeli K., Fadaei H., Naghavi H., Pham T. Tien Bui D. (2018): Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10: 172: https://doi.org/10.3390/rs10020172
 
Van Pham M., Pham T.M., Du Q.V.V., Bui Q.T., Van Tran A., Pham H.M., Nguyen T.N. (2019): Integrating Sentinel-1A SAR data and GIS to estimate aboveground biomass and carbon accumulation for tropical forest types in Thuan Chau district, Vietnam. Remote Sensing Applications: Society and Environment, 14: 148–157. https://doi.org/10.1016/j.rsase.2019.03.003
 
Watson C. (2009). Forest carbon accounting: overview and principles. Forest Carbon Accounting: Overview and Principles: 39.
 
Yan F., Wu B., Wang Y. (2013): Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years. Journal of Arid Land. 5: 521–530. https://doi.org/10.1007/s40333-013-0180-0
 
Yin G., Zhang Y., Sun Y., Wang T., Zeng Z., Piao S. (2015): MODIS based estimation of forest aboveground biomass in China. PloS One, 10: e0130143. https://doi.org/10.1371/journal.pone.0130143
 
Zhang J., Huang S., Hogg E.H., Lieffers V., Qin Y., He F. (2014): Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences. 11: 2793–2808 https://doi.org/10.5194/bg-11-2793-2014
 
Zhu B., Wang X., Fang W., Piao S., Shen H., Zhao S., Peng C. (2010): Altitudinal changes in a carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123: 439–452. https://doi.org/10.1007/s10265-009-0301-1
 
Zhu Y., Liu K., Liu L., Wang S., Liu H. (2015): Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images. Journal of Remote Sensing, 7: 12192–12214. https://doi.org/10.3390/rs70912192
 
Zobeiry M. (2000): Forest Inventory (measurement of tree and stand). Tehran, Tehran University Publication: 401.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences