The impact of agricultural land afforestation on soil water content in Central Bohemia

Vopravil J., Formánek P., Heřmanovská D., Khel T., Jacko K. (2021): The impact of agricultural land afforestation on soil water content in Central Bohemia. J. For. Sci., 67: 512–521.

download PDF

In the Czech Republic, the afforestation of agricultural land has been supported by providing subsidies from the government and the European Union. Afforestation of less-productive agricultural land provides many benefits including carbon sequestration, soil erosion control, biodiversity, water retention, cooling, social benefits, decreasing noise and light pollution, increasing air quality, wind speed reduction, oxygen production, wood production and non-wood products. In some aspects, it is possible to produce wood of the same quality on former agricultural land compared to permanent forest land. In this study, we attempted to find out the course of temperatures and volumetric water content as well as some other physical soil properties (at depths of 20, 40 and 60 cm) 9 years after the afforestation of agricultural land (warm, mild dry region of the Czech Republic) with a mixture of broadleaved tree species (Quercus robur L., Quercus rubra L. and Acer platanoides L.) or monospecific Pinus sylvestris L. stand; the study was performed in the period from April to the beginning of November 2020. Concerning the studied physical soil properties, the value of bulk density was higher (and total porosity lower) at a depth of 20 cm in Pinus sylvestris L. compared with agricultural land or the mixture of broadleaves; the water stability of soil aggregates was higher after the afforestation with the mixture of broadleaves. The temperature was lower in the soil of afforested plots (at all studied depths) compared to the agriculturally used land. Differences in rainfall interception, transpiration, soil
(and forest floor) properties and other factors could influence the obtained values of water content in the soil of the studied plots. The average volumetric water contents were the highest in the plots with Scots pine (depth of 20 cm) and broadleaves (depth of 40 cm), and on the control plot (depth of 60 cm). The volumetric water content at a soil depth of 20 cm was not significantly (P > 0.05) different when the plot with Scots pine and agriculturally used land were compared. In all other cases and depths, the differences between plots were significant (P < 0.05).

Bacq-Labreuil A., Crawford J., Mooney S.J., Neal A.L., Ritz K. (2019): Phacelia (Phacelia tanacetifolia Benth.) affects soil structure differently depending on soil texture. Plant and Soil, 441: 543–554.
Baver L.D., Gardner W.R., Gardner W.H. (1972): Soil Physics. New York, Wiley: 498.
Bedrna Z. (1977): Pôdotvorné procesy a pôdne režimy. Bratislava, Veda: 129. (in Slovak)
Bünemann E.K., Condron L.M. (2007): Phosphorus and sulphur cycling in terrestrial ecosystems. In: Marschner P., Rengel Z. (eds): Nutrient Cycling in Terrestrial Ecosystems. Berlin, Springer: 65–92.
Cantú Silva I., González Rodríguez H. (2001): Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiology, 21: 1009–1013.
Cukor J., Zeidler A., Vacek Z., Vacek S., Šimůnek V., Gallo J. (2020): Comparison of growth and wood quality of Norway spruce and European larch: Effect of previous land use. European Journal of Forest Research, 139: 459–472.
Duffková R., Kvítek T. (2009): Effect of cutting regime on soil physical properties of wet thistle meadows. Soil and Water Research, 4: 104–115.
Fang S., Zhao C., Jian S. (2016): Spatial variability of throughfall in a Pinus tabulaeformis plantation forest in Loess Plateau, China. Scandinavian Journal of Forest Research, 31: 467–476.
Gallo J., Baláš M., Linda R., Kuneš I. (2020): The effects of planting stock size and weeding on survival and growth of small-leaved lime under drought-heat stress in the Czech Republic. Austrian Journal of Forest Science, 137: 43–66.
Hemmat A., Aghilinategh N., Rezainejad Y., Sadeghi M. (2010): Long–term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil and Tillage Research, 108: 43–50.
Holubík O., Podrázský V., Vopravil J., Khel T., Remeš J. (2014): Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil and Water Research, 9: 192–200.
Hrabovský A., Dlapa P., Cerdà A., Kollár J. (2020): The impacts of vineyard afforestation on soil properties, water repellency and near-saturated infiltration in the little carpathians mountains. Water, 12: 2550.
Huntington T.G. (2007): Available water capacity and soil organic matter. In: Lal R. (ed): Encyclopedia of Soil Science. Boca Raton, CRC Press: 139–143.
Ilstedt U., Malmer A., Verbeeten E., Murdiyarso D. (2007): The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. Forest Ecology and Management, 251: 45–51.
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO: 192.
Jackson R.B., Jobbágy E.G., Avissar R., Roy S.B., Barrett D.J., Cook C.W., Farley K.A., le Maitre D.C., McCarl B.A., Murray B.C. (2005): Trading water for carbon with biological carbon sequestration. Science, 310: 1944–1947.
Karkliņš A., Līpenīte I. (2013): Results of research on the soil properties of agricultural land after afforestation. In: Zinātniski praktiskā konference Lauksaimniecības zinātne veiksmīgai saimniekošanai, Jelgava, Feb 21–22, 2013: 84–88. (in Latvian)
Kemper W.D., Rosenau R.C. (1986): Aggregate stability and size distribution. In: Krute, A. (ed.): Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. Madison, American Society of Agronomy–Soil Science Society of America: 425–442.
Kupka I., Podrázský V. (2010): Vliv druhového složení porostů na zalesněné zemědělské půdě na pedofyzikální vlastnosti a poutání uhlíku v povrchových horizontech. In: Knott R., Peňáz J., Vaněk P. (eds): Pěstování lesů v nižších vegetačních stupních. Křtiny, Sept 6–8, 2010: 71–76. (in Czech)
Lin M., Sadeghi S.M.M., Van Stan J.T. (2020): Partitioning of rainfall and sprinkler-irrigation by crop canopies: A global review and evaluation of available research. Hydrology, 7: 76.
Mazza G., Amorini E., Cutini A., Manetti M.C. (2011): The influence of thinning on rainfall interception by Pinus pinea L. in Mediterranean coastal stands (Castel Fusano – Rome). Annals of Forest Science, 68: 1323–1332.
Michelsen-Correa S., Scull P. (2005): The impact of reforestation on soil temperature. Middle States Geographer, 38: 39–44.
Moreno-Pérez M.F., Pérez-Arellano R., Roldán-Cañas J. (2018): Influence of interannual rainfall variability on the interception process in a continental Mediterranean climate. Revista de la Facultad de Ciencias Agrarias UNCuyo, 50: 139–154.
MZe (2018): Information on Forests and Forestry in the Czech Republic by 2017. Prague, The Ministry of Agriculture of the Czech Republic: 22.
Nazari M., Sadeghi S.M.M., Van Stan J.T., Chaichi M.R. (2020): Rainfall interception and redistribution by maize farmland in central Iran. Journal of Hydrology: Regional Studies, 27: 100656.
Olszewska M., Smal H. (2008): The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. I. Physical and sorptive properties. Plant and Soil, 305: 157–169.
Poleno Z., Vacek S., Podrázský V., Remeš J., Mikeska M., Kobliha J., Bílek L., Baláš M. (2011): Pěstování lesů I. Ekologické základy pěstování lesů. Kostelec nad Černými lesy, Lesnická práce: 320. (in Czech)
Putuhena W.M., Cordery I. (1996): Estimation of interception capacity of the forest floor. Journal of Hydrology, 180: 283–299.
Ren Z., Li Z., Liu X., Li P., Cheng S., Xu G. (2018): Comparing watershed afforestation and natural revegetation impacts on soil moisture in the semiarid Loess Plateau of China. Scientific Reports, 8: 2972.
Reynolds E.R.C., Henderson C.S. (1967): Rainfall interception by beech, larch and Norway spruce. Forestry: An International Journal of Forest Research, 40: 165–184.
Ruehlmann J., Körschens M. (2009): Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal, 73: 876–885.
Rytter R.M., Rytter L. (2020): Carbon sequestration at land use conversion – Early changes in total carbon stocks for six tree species grown on former agricultural land. Forest Ecology and Management, 466: 118129.
Sakin E., Deliboran A., Tutar E. (2011): Bulk density of Harran plain soils in relation to other soil properties. African Journal of Agricultural Research, 6: 1750–1757.
Savva Y., Szlavecz K., Pouyat R.V., Groffman P.M., Heisler G. (2010): Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal, 74: 469–480.
Soil Science Division Staff (2017): Soil Survey Manual. USDA Handbook 18. Washington, D.C., Government Printing Office: 639.
Song Y.T., Zhou D.W., Zhang H.X., Li G.D., Jin Y.H., Li Q. (2013): Effects of vegetation height and density on soil temperature variations. Chinese Science Bulletin, 58: 907–912.
Stocking M. (1985): Development projects for the small farmer: Lessons from eastern and central Africa in adapting conservation. In: El-Swaify S.A., Moldenhauer W.C., Lo A. (eds): Soil Erosion and Conservation. Ankeny, Soil Conservation Society of America: 747–758.
Středa T., Vlček V., Rožnovský J. (2008): Carbon sequestration in the agroecosystem. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 56: 167–174. (in Czech)
Tesař M., Šír M., Dvořák I.J. (2004): Influence of vegetative cover changes on the soil water regime in head water areas in the Giant Mountains. Opera Corcontica, 41: 30–37.
Tolimir M., Kresović B., Životić L., Dragović S., Dragović R., Sredojević Z., Gajić B. (2020): The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Scientific Reports, 10: 13668.
Vacek Z., Cukor J., Vacek S., Linda R., Prokůpková A., Podrázský V., Gallo J., Vacek O., Šimůnek V., Drábek O., Hájek V., Spasić M., Brichta J. (2021a): Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? European Journal of Forest Research, 140: 1243–1266.
Vacek Z., Linda R., Cukor J., Vacek S., Šimůnek V., Gallo J., Vančura K. (2021b): Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? Forest Ecology and Management, 485: 118951.
Valla M., Kozák J., Němeček J., Matula S., Borůvka L., Drábek O. (2000): Pedologické praktikum. Prague, Czech University of Life Sciences: 148. (in Czech)
Van der Salm C., van der Gon H.D., Wieggers R., Bleeker A., van der Toorn A. (2006): The effect of afforestation on water recharge and nitrogen leaching in the Netherlands. Forest Ecology and Management, 221: 170–182.
Vincke C., Granier A., Breda N., Devillez F. (2005): Evapotranspiration of a declining Quercus robur (L.) stand from 1999 to 2001. II. Daily actual evapotranspiration and soil water reserve. Annals of Forest Science, 62: 615–623.
Vopravil J., Novotný I., Khel T., Hladík J., Jacko K., Papaj V., Vašků Z., Vrabcová T., Pírková I., Rožnovský J., Havelková L., Huml J., Sekanina A., Novák P., Voltr V., Středa T., Kohoutová L., Poruba M., Czelis R., Janků J., Penížek V. (2011): Půda a její hodnocení v ČR. Díl II. Prague, VUMOP: 156. (in Czech)
Vopravil J., Podrázský V., Khel T., Holubík O., Vacek S. (2014): Effect of afforestation of agricultural soils and tree species composition on soil physical chracteristics changes. Ekológia (Bratislava), 33: 67–80.
Vopravil J., Podrázský V., Batysta M., Novák P., Havelková L., Hrabalíková M. (2015): Identification of agricultural soils suitable for afforestation in the Czech Republic using a soil database. Journal of Forest Science, 61: 141–147.
Vopravil J., Podrázský V., Holubík O., Vacek S., Beitlerová H., Vacek Z. (2017a): Principy zakládání porostů na bývalé zemědělské půdě v rámci ploch vymezených k zalesnění. Prague, VUMOP: 58. (in Czech)
Vopravil J., Khel T., Vráblík P., Vráblíková J. (2017b): Changes in physical and chemical soil characteristics as a result of subsurface tile drainage. Open Journal of Soil Science, 7: 80878.
Vopravil J., Formánek P., Janků J., Holubík O., Khel T. (2021): Early changes in soil organic carbon following afforestation of former agricultural land. Soil and Water Research. Available at:
Xiao Q., McPherson E.G., Ustin S.L., Grismer M.E., Simpson J.R. (2000): Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrological Processes, 14: 763–784.<763::AID-HYP971>3.0.CO;2-7
Yao Y., Wang X., Zeng Z., Liu Y., Peng S., Zhu Z., Piao S. (2016): The effect of afforestation on soil moisture content in Northeastern China. PLoS One, 11: e0160776.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti