Baddeley A., Turner R. (2005): Spatstat: An R package for analyzing spatial point. Journal of Statistical Software, 12: 1–42.
https://doi.org/10.18637/jss.v012.i06
Barhoumi C., Ali A.A., Peyron O., Dugerdil L., Borisova O., Golubeva Y., Subetto Y., Kryshen A., Drobyshev I., Ryzhkova N., Joannin S. (2020): Did long-term fire control the coniferous boreal forest composition of the northern Ural region (Komi Republic, Russia)? Journal of Biogeography, 47: 2426–2441.
https://doi.org/10.1111/jbi.13922
Bergeron Y., Gauthier S., Flannigan M., Kafka V. (2004): Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology, 85: 1916–1932.
https://doi.org/10.1890/02-0716
Bowman D.M.J.S., Murphy B.P., Boer M.M., Bradstock R.A., Cary G.J., Cochrane M.A., Fensham R.J., Krawchuk M.A., Price O.F., Williams R.J. (2013): Forest fire management, climate change, and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment, 11: 66–68.
https://doi.org/10.1890/13.WB.005
Danilin I.M., Favorskaya M.N. (2013): Three-dimensional modeling of forest landscape scenes based on remote sensing data. Geography and Natural Resources, 2: 151–159. (in Russian)
Dieckmann U., Law R., Metz J.A.J. (2000): The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge, Cambridge University Press: 564.
Drobyshev I., Bergeron Y., Linderhölm H.W., Granstrom A., Niklasson M. (2015): A 700-year record of large fire years in northern Scandinavia shows large variability and increased frequency during the 1800s. Journal of Quaternary Science, 30: 211–221.
https://doi.org/10.1002/jqs.2765
Engelmark O., Hofgaard A., Arnborg T. (1998): Successional trends 219 years after fire in on old Pinus sylvestris stands in northern Sweden. Journal of Vegetation Science, 9: 583–592.
https://doi.org/10.2307/3237274
Furyaev V.V., Zablotskii V.I., Chernykh V.A., Zlobina L.P. (2009): Resistance of ribbon-like pine forests to fires in the Altai region. Lesovedenie, 3: 11–19. (in Russian)
Garet J., Raulier F., Pothier D., Cumming S.G. (2012): Forest age class structures as indicators of sustainability in boreal forest: Are we measuring them correctly? Ecological Indicators, 23: 202–210.
https://doi.org/10.1016/j.ecolind.2012.03.032
Gavrikov V., Stoyan D. (1995): The use of marked point processes in ecological and environmental forest studies. Environmental and Ecological Statistics, 4: 331–344.
https://doi.org/10.1007/BF00569362
Getzin S., Wiegand K. (2007): Asymmetric tree growth at the stand level: Random crown patterns and the response to slope. Forest Ecology and Management, 242: 165–174.
https://doi.org/10.1016/j.foreco.2007.01.009
Grabarnik P., Särkkä A. (2009): Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecological Modelling, 220: 1232–1240.
https://doi.org/10.1016/j.ecolmodel.2009.02.021
Grabarnik P. Myllymäki M., Stoyan D. (2011): Correct testing of mark independence for marked point patterns. Ecological Modelling, 222: 3888–3894.
https://doi.org/10.1016/j.ecolmodel.2011.10.005
Hancock M.H., Summers R.W., Amphlett A., Willi J. (2009): Testing prescribed fire as a tool to promote Scots pine Pinus sylvestris regeneration. European Journal of Forest Research, 128: 319–333.
https://doi.org/10.1007/s10342-009-0267-5
Ipatov V.S., Tarkhova T.N. (1975): Quantitative analysis of cenotic effects in the placement of trees across the territory. Botanicheskii Zhurnal, 9: 1237–1250. (in Russian)
Ivanova G.A., Ivanov A.V. (2015): Fires in the Pine Forests of Central Siberia. Novosibirsk, Nauka: 239. (in Russian)
James P.M.A., Fortin M.J., Fall A., Kneeshaw D., Messier C. (2007): The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystems, 10: 1261–1277.
https://doi.org/10.1007/s10021-007-9095-y
Kilpeläinen A., Strandman H., Grönholm T., Ikonen V.P., Torssonen P., Kellomäki S., Peltola Н. (2017): Effects of initial age structure of managed Norway spruce forest area on net climate impact of using forest biomass for energy. BioEnergy Research, 10: 499–508.
https://doi.org/10.1007/s12155-017-9821-z
Korpela I., Tuomola T., Välimäki E. (2007): Mapping forest plots: An efficient method combining photogrammetry and field triangulation. Silva Fennica, 41: 457–469.
https://doi.org/10.14214/sf.283
Kutyavin I.N. (2018): Pine Forest of the Northern Cis-Urals: Structure, Growth, Productivity. Syktyvkar, Institute of Biology, Komi SC: 176. (in Russian)
Kuuluvainen T., Rouvinen S. (2000): Post-fire understory regeneration in a boreal Pinus sylvestris forest site with different fire histories. Journal of Vegetation Science, 11: 801–812.
https://doi.org/10.2307/3236550
Kuuluvainen T., Mäki J., Karjalainen L., Lehtonen H. (2002): Tree age distributions in old-growth forest sites in Vienansalo wilderness, eastern Fennoscandia. Silva Fennica, 36: 169–184.
https://doi.org/10.14214/sf.556
Kuzmichev V.V. (2013): Zakonomernosti dinamiki drevostoev: Principy i modeli. Novosibirsk, Nauka: 208. (in Russian)
Madany M.H., Swetnam T.W., West N.E. (1982): Comparison of two approaches for determining fire dates from tree scars. Forest Science, 28: 856–861.
Melekhov I.S. (1948): Vliyanie pozharov na les. Moscow, Leningrad, Gosudarstvennoe Lesotehnicheskoe Izdatelstvo: 126. (in Russian)
Pimont F., Prodon R., Rigolot E. (2011): Comparison of post-fire mortality in endemic Corsican black pine (Pinus nigra ssp. laricio) and its direct competitor (Pinus pinaster). Annals of Forest Science, 68: 425–432.
https://doi.org/10.1007/s13595-011-0031-0
Plotnikov V.V. (1979): Evolyuciya struktury rastitel'nyh soobshchestv. Moscow, Nauka: 276. (in Russian)
Ryzhkova N., Pinto G., Kryshen’ A., Bergeron Y., Ols C., Drobyshev I. (2020): Multi-century reconstruction suggests complex interactions of climate and human controls of forest fire activity in a Karelian boreal landscape, North-West Russia. Forest Ecology and Management, 459: 117770.
https://doi.org/10.1016/j.foreco.2019.117770
Sannikov S.N., Sannikova N.S. (2009): Evolutionary aspects of pyroecology of light coniferous species. Lesovedenie, 3: 3–10. (in Russian)
Schabenberger O., Gotway C.A. (2005): Statistical Methods for Spatial Data Analysis. Boca Raton, Chapman and Hall/CRC: 488.
Shanin V. Komarov A., Mäkipää R. (2014): Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. European Journal of Forest Research, 133: 273–286.
https://doi.org/10.1007/s10342-013-0759-1
Shanin V.N., Shashkov M.P., Ivanova N.V., Grabarnik P.Y. (2016): The effect of aboveground competition on spatial structure and crown shape of the dominating canopy species of forest stand of European Russia. Russian Journal of Ecosystem Ecology, 1: 1–14. (in Russian)
https://doi.org/10.21685/2500-0578-2016-4-5
Stinson G., Kurz W.A., Smyth C.E., Neilson E.T., Dymond C.C., Metsaranta J.M., Boisvenue C., Rampley G.J., Li Q., White T.M., Blain D. (2011): An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17: 2227–2244.
https://doi.org/10.1111/j.1365-2486.2010.02369.x
Storozhenko V.G. (2007): Evolyucionnye principy povedeniya derevorazrushchayushchih gribov v lesnyh biogeocenozah. Tula, Grif i K: 192. (in Russian)
Stoyan D., Penttinen A. (2000): Recent applications of point process methods in forestry statistics. Statistical Science, 15: 61–78.
Vauhkonen J., Mehtätalo L. (2014): Matching remotely sensed and field-measured tree size distributions. Canadian Journal of Forest Research, 45: 353–363.
https://doi.org/10.1139/cjfr-2014-0285
Wallenius T., Kuuluvainen T., Heikkilä R., Lindholm T. (2002): Spatial tree age structure and fire history in two old-growth forests in eastern Fennoscandia. Silva Fennica, 36: 185–199.
https://doi.org/10.14214/sf.557
Wiegand T., Moloney K.A. (2004): Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 104: 209–229.
https://doi.org/10.1111/j.0030-1299.2004.12497.x