LaiPen LP 100 – a new device for estimating forest ecosystem leaf area index compared to the etalon: A methodologic case study

https://doi.org/10.17221/112/2018-JFSCitation:Černý J., Krejza J., Pokorný R., Bednář P. (2018): LaiPen LP 100 – a new device for estimating forest ecosystem leaf area index compared to the etalon: A methodologic case study. J. For. Sci., 64: 455-468.
download PDF

Fast and precise leaf area index (LAI) estimation of a forest stand is frequently needed for a wide range of ecological studies. In the presented study, we compared side-by-side two instruments for performing LAI estimation (i.e. LaiPen LP 100 as a “newly developed device” and LAI-2200 PCA as the “world standard”), both based on indirect optical methods for performing LAI estimation in pure Norway spruce (Picea abies (Linnaeus) H. Karsten) stands under different thinning treatments. LAI values estimated by LaiPen LP 100 were approximate 5.8% lower compared to those measured by LAI-2200 PCA when averaging all collected data regardless of the thinning type. Nevertheless, when we considered the differences among LAI values at each measurement point within a regular grid, LaiPen LP 100 overestimated LAI values compared to those from LAI-2200 PCA on average by 1.4%. Therefore, both instruments are comparable. Similar LAI values between thinning from above (A) and thinning from below (B) approaches were indirectly detected by both instruments. The highest values of canopy production index and leaf area efficiency were observed within the stand thinned from above (plot A).

References:
Albrechtová J., Kupková L., Campbell P.K.E., Rock B.N., Cudlín P., Červená L., Fárová K., Havránek F., Chmelíková E., Edwards Jonášová M., Kopačková V., Krása P., Kubínová Z., Lhotáková Z., Liška J., Melichar V., Mišurec J., Moravec I., Neuwirthová E., Novák J., Potůčková M., Slodičák M., Šrámek V. (2017): Metody hodnocení fyziologického stavu smrkových porostů. 1st Ed. Prague, Česká geografická společnost: 401.
 
Barr Alan G., Black T.A., Hogg E.H., Kljun N., Morgenstern K., Nesic Z. (2004): Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255 https://doi.org/10.1016/j.agrformet.2004.06.011
 
Barták M., Dvořák V., Hudcová L. (1993): Rozložení biomasy jehlic v korunové vrstvě smrkového porostu. Lesnictví-Forestry, 39: 273–281.
 
Bequet R. (2011): Environmental determinants of the temporal and spatial variability in leaf area index of Fagus sylvatica L., Quercus robur L., and Pinus sylvestris L. [Ph.D. Thesis.] Antwerpen, University of Antwerp: 105.
 
Breda N. J. J. (2003): Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403-2417 https://doi.org/10.1093/jxb/erg263
 
Bréda N, Granier A (1996): Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Annales des Sciences Forestières, 53, 521-536 https://doi.org/10.1051/forest:19960232
 
Campbell G.S., Norman J.M. (1989): The description and measurement of plant canopy structure. In: Russell G., Marshall B., Jarvis P.G. (eds): Plant Canopies: Their Growth, Form, and Function. Cambridge, Cambridge University Press: 1–19.
 
Carroll G.L. (1980): Forest canopies: Complex and independent subsystems. In: Waring R.H. (ed.): Forests: Fresh Perspectives from Ecosystem Analysis. Corvallis, Oregon State University Press: 87–107.
 
Čater Matjaž, Schmid I., Kazda M. (2013): Instantaneous and potential radiation effect on underplanted European beech below Norway spruce canopy. European Journal of Forest Research, 132, 23-32 https://doi.org/10.1007/s10342-012-0651-4
 
Černý Jakub, Haninec Pavel, Pokorný Radek (): Leaf area index estimated by direct, semi-direct, and indirect methods in European beech and sycamore maple stands. Journal of Forestry Research, , - https://doi.org/10.1007/s11676-018-0809-0
 
Cescatti Alessandro (1998): Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy. Annales des Sciences Forestières, 55, 89-102 https://doi.org/10.1051/forest:19980106
 
Chason Jennifer W., Baldocchi Dennis D., Huston Michael A. (1991): A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology, 57, 107-128 https://doi.org/10.1016/0168-1923(91)90081-Z
 
Chen Jing M. (1996): Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135-163 https://doi.org/10.1016/0168-1923(95)02291-0
 
Chen J.M., Black T.A. (1992): Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology, 60, 249-266 https://doi.org/10.1016/0168-1923(92)90040-B
 
Chen J.M., Black T.A., Adams R.S. (1991): Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology, 56, 129-143 https://doi.org/10.1016/0168-1923(91)90108-3
 
Chen Jing M., Rich Paul M., Gower Stith T., Norman John M., Plummer Steven (1997): Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research: Atmospheres, 102, 29429-29443 https://doi.org/10.1029/97JD01107
 
Chianucci Francesco, Macfarlane Craig, Pisek Jan, Cutini Andrea, Casa Raffaele (2015): Estimation of foliage clumping from the LAI-2000 Plant Canopy Analyzer: effect of view caps. Trees, 29, 355-366 https://doi.org/10.1007/s00468-014-1115-x
 
Chroust L. (1993): Asimilační biomasa smrku (Picea abies) a její fotosyntetický výkon. Lesnictví-Forestry, 39: 265–272.
 
Cutini Andrea, Matteucci Giorgio, Mugnozza Giuseppe Scarascia (1998): Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55-65 https://doi.org/10.1016/S0378-1127(97)00269-7
 
Danner M., Locherer M., Hank T., Richter K. (2015): Measuring Leaf Area Index (LAI) with the Li-Cor LAI 2200C or LAI-2200 (+2200Clear Kit) – Theory, Measurement, Problems, Interpretation. EnMAP Field Guides Technical Report. Potsdam, GFZ Data Services: 24.
 
Duveiller Grégory, Weiss Marie, Baret Frédéric, Defourny Pierre (2011): Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sensing of Environment, 115, 887-896 https://doi.org/10.1016/j.rse.2010.11.016
 
Eckrich Carolyn A., Flaherty Elizabeth A., Ben-David Merav, Bond-Lamberty Ben (2013): Estimating Leaf Area Index in Southeast Alaska: A Comparison of Two Techniques. PLoS ONE, 8, e77642- https://doi.org/10.1371/journal.pone.0077642
 
FASSNACHT K, GOWER S, NORMAN J, MCMURTRIC R (1994): A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology, 71, 183-207 https://doi.org/10.1016/0168-1923(94)90107-4
 
Fernandes R., Plummer S., Nightingale J., Baret F., Camacho F., Fang H., Garrigues S., Gobron N., Lang M., Lacaze R., Le Blanc S., Meroni M., Martinez B., Nilson T., Pisek J., Sonnentag O., Verger A., Welles J., Weiss M., Widlowski J.L. (2014): Global leaf area index product validation good practices. Version 2.0. Available at https://lpvs.gsfc.nasa.gov/PDF/CEOS_LAI_PROTOCOL_Aug2014_v2.0.1.pdf
 
Fleck S., Raspe S., Čater M., Schleppi P., Ukonmaanaho L., Greve M., Hertel C., Weiss W., Rumpf S. (2012): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Part XVII. Leaf Area Measurements. Hamburg, UNECE ICP Forests Programme Co-ordinating Centre: 36.
 
Gholz Henry L. (1982): Environmental Limits on Aboveground Net Primary Production, Leaf Area, and Biomass in Vegetation Zones of the Pacific Northwest. Ecology, 63, 469-481 https://doi.org/10.2307/1938964
 
Gower Stith T., Norman John M. (1991): Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations. Ecology, 72, 1896-1900 https://doi.org/10.2307/1940988
 
Gower Stith T., Kucharik Chris J., Norman John M. (1999): Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems. Remote Sensing of Environment, 70, 29-51 https://doi.org/10.1016/S0034-4257(99)00056-5
 
Grassi G., Bagnaresi U. (2001): Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiology, 21, 959-967 https://doi.org/10.1093/treephys/21.12-13.959
 
Gspaltl Martin, Bauerle William, Binkley Dan, Sterba Hubert (2013): Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288, 49-59 https://doi.org/10.1016/j.foreco.2011.11.044
 
Hadaš P. (2002): Temperature and precipitation conditions in the high elevation spruce stands of the Drahanská vrchovina upland. Ekológia, 21: 69–87.
 
He Yuhong, Guo Xulin, Wilmshurst John F (2007): Comparison of different methods for measuring leaf area index in a mixed grassland. Canadian Journal of Plant Science, 87, 803-813 https://doi.org/10.4141/CJPS07024
 
Hicks Stanley K., Lascano Robert J. (1995): Estimation of Leaf Area Index for Cotton Canopies Using the LI-COR LAI-2000 Plant Canopy Analyzer. Agronomy Journal, 87, 458- https://doi.org/10.2134/agronj1995.00021962008700030011x
 
HIROSE T. (2004): Development of the Monsi-Saeki Theory on Canopy Structure and Function. Annals of Botany, 95, 483-494 https://doi.org/10.1093/aob/mci047
 
Homolová L., Malenovský Z., Hanuš J., Tomášková I., Dvořáková M., Pokorný R. (2007): Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-7/C50: 499–504.
 
Hyer Edward J., Goetz Scott J. (2004): Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments from a boreal forest site. Agricultural and Forest Meteorology, 122, 157-174 https://doi.org/10.1016/j.agrformet.2003.09.013
 
IUSS Working Group WRB (2006): World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication. World Soil Resources Reports No. 103. Rome, FAO: 128.
 
Jonckheere I. (2005): Consistent determination of leaf area index and quantification of foliage distribution in forest canopies based on digital hemispherical photography. [Ph.D. Thesis.] Leuven, University of Leuven: 157.
 
Jonckheere Inge, Fleck Stefan, Nackaerts Kris, Muys Bart, Coppin Pol, Weiss Marie, Baret Frédéric (2004): Review of methods for in situ leaf area index determination. Agricultural and Forest Meteorology, 121, 19-35 https://doi.org/10.1016/j.agrformet.2003.08.027
 
Kenkel N. C. (1988): Pattern of Self-Thinning in Jack Pine: Testing the Random Mortality Hypothesis. Ecology, 69, 1017-1024 https://doi.org/10.2307/1941257
 
Knott R. (2002): Development of a young stand of a Norway spruce (Picea abies [L.] Karst.) of the second generation on an allochthonous site. Ekológia, 21: 5–13.
 
Kostner B., Falge E., Tenhunen J. D. (2002): Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiology, 22, 567-574 https://doi.org/10.1093/treephys/22.8.567
 
Krejza J., Pokorný R., Marková I. (2013): Is allometry for aboveground organ’s mass estimation in young Norway spruce stands affected by different type of thinning? Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61: 1755–1761.
 
Krejza Jan, Světlík Jan, Pokorný Radek (2015): Spatially explicit basal area growth of Norway spruce. Trees, 29, 1545-1558 https://doi.org/10.1007/s00468-015-1236-x
 
Kučera J., Bednářová E., Kamlerová K. (2002): Vertical profile of needle biomass and penetration of radiation through the spruce stand. Ekológia, 21: 107–121.
 
Kucharik Christopher J, Norman John M, Gower Stith T (1998): Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91, 69-88 https://doi.org/10.1016/S0168-1923(98)00064-1
 
Küßner Ralf, Mosandl Reinhard (2000): Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Canadian Journal of Forest Research, 30, 440-447 https://doi.org/10.1139/x99-227
 
Kuuluvainen Timo, Pukkala Timo (1989): Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: effect of crown shape and sun elevation. Ecological Modelling, 49, 89-100 https://doi.org/10.1016/0304-3800(89)90045-8
 
Lang A.R.G. (1991): Application of some of Cauchy's theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance. Agricultural and Forest Meteorology, 55, 191-212 https://doi.org/10.1016/0168-1923(91)90062-U
 
Larcher W. (2003): Physiological Ecology of Plants: Ecophysiology and Stress Physiology of Functional Groups. 4th Ed. Berlin, Heidelberg, New York, Springer: 517.
 
Le Dantec Valérie, Dufrêne Eric, Saugier Bernard (2000): Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management, 134, 71-81 https://doi.org/10.1016/S0378-1127(99)00246-7
 
LI-COR (1991): LAI-2000 Plant Canopy Analyzer. Instruction Manual. Lincoln, LI-COR, Inc.: 179.
 
LI-COR (2011): LAI-2200 Plant Canopy Analyzer. Instruction Manual. Available at https://www.licor.com/documents/6n3conpja6uj9aq1ruyn
 
Liu Z, Jin G, Zhou M (2016): Evaluation and correction of optically derived leaf area index in different temperate forests. iForest - Biogeosciences and Forestry, 9, 55-62 https://doi.org/10.3832/ifor1350-008
 
Majasalmi Titta, Rautiainen Miina, Stenberg Pauline, Rita Hannu (2012): Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. Agricultural and Forest Meteorology, 154-155, 38-43 https://doi.org/10.1016/j.agrformet.2011.10.002
 
Mäkinen Harri, Isomäki Antti (2004): Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. Forest Ecology and Management, 201, 295-309 https://doi.org/10.1016/j.foreco.2004.07.017
 
Menšík L., Fabiánek T., Tesař V., Kulhavý J. (2009): Humus conditions and stand characteristics of artificially established young stands in the process of the transformation of spruce monocultures. Journal of Forest Science, 55, 215-223 https://doi.org/10.17221/18/2009-JFS
 
Meyers Tilden, Tha Paw U Kyaw (1986): Testing of a higher-order closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteorology, 37, 297-311 https://doi.org/10.1007/BF00122991
 
Meyers Tilden P., Paw U Kyaw Tha (1987): Modelling the plant canopy micrometeorology with higher-order closure principles. Agricultural and Forest Meteorology, 41, 143-163 https://doi.org/10.1016/0168-1923(87)90075-X
 
Miller JB (1967): A formula for average foliage density. Australian Journal of Botany, 15, 141- https://doi.org/10.1071/BT9670141
 
Misson Laurent, Vincke Caroline, Devillez Freddy (2003): Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management, 177, 51-63 https://doi.org/10.1016/S0378-1127(02)00324-9
 
Moffet M.W. (2001): The nature and limits of canopy biology. Selbyana, 22: 155–179.
 
Mussche Sylvie, Samson Roeland, Nachtergale Lieven, De Schrijver An, Lemeur Raoul, Lust Noël (2001): A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, - https://doi.org/10.14214/sf.575
 
Němeček J., Macků J., Vokoun J., Vavříček D., Novák P. (2001): Taxonomický klasifikační systém půd České republiky. Prague, ČZU, VÚMOP: 78.
 
Niinemets U., Kull O., Tenhunen J. D. (1998): An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18, 681-696 https://doi.org/10.1093/treephys/18.10.681
 
Nilson Tiit, Kuusk Andres, Lang Mait, Pisek Jan, Kodar Ave (2011): Simulation of statistical characteristics of gap distribution in forest stands. Agricultural and Forest Meteorology, 151, 895-905 https://doi.org/10.1016/j.agrformet.2011.02.009
 
Norby R. J. (1996): Forest canopy productivity index. Nature, 381, 564-564 https://doi.org/10.1038/381564a0
 
Norman J.M., Campbell G.S. (1989): Canopy structure. In: Pearcy R.W., Mooney H.A., Ehrelinger J.R., Rundel P.W. (eds): Physiological Plant Ecology: Field Methods and Instrumentation. London, Chapman and Hall: 301–325.
 
Pokorný R., Stojnič S. (2012): Leaf area index of Norway spruce stands in relation to age and defoliation. Beskydy, 5, 173-180 https://doi.org/10.11118/beskyd201205020173
 
Pokorný R., Tomášková I., Havránková K. (2008): Temporal variation and efficiency of leaf area index in young mountain Norway spruce stand. European Journal of Forest Research, 127, 359-367 https://doi.org/10.1007/s10342-008-0212-z
 
PSI Czech Republic (2015): LaiPen LP 100. Manual and User Guide. Drásov, Photon Systems Instruments, spol. s r.o.: 45.
 
Rich Paul M. (1990): Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 5, 13-29 https://doi.org/10.1080/02757259009532119
 
Smith N. J., Chen J. M., Black T. A. (1993): Effects of clumping on estimates of stand leaf area index using the LI-COR LAI-2000. Canadian Journal of Forest Research, 23, 1940-1943 https://doi.org/10.1139/x93-244
 
Sommer K.J., Lang A.R.G. (1994): Comparative analysis of two indirect methods of measuring leaf area index as applied to minimal and spur pruned grape vines. Australian Journal of Plant Physiology, 21: 197–206.
 
Stenberg Pauline (1996): Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agricultural and Forest Meteorology, 79, 1-8 https://doi.org/10.1016/0168-1923(95)02274-0
 
Taylor C.S. (1993): Kenaf: An emerging new crop industry. In: Janick J., Simon J.E. (eds): New Crops. New York, Wiley Press: 402–407.
 
Urban O., Kosvancova M., Marek M. V., Lichtenthaler H. K. (2007): Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Tree Physiology, 27, 1207-1215 https://doi.org/10.1093/treephys/27.8.1207
 
Viewegh J., Kusbach A., Mikeska M. (2012): Czech forest ecosystem classification. Journal of Forest Science, 49, 74-82 https://doi.org/10.17221/4682-JFS
 
Ward Jeffrey S., Parker George R. (1989): Spatial Dispersion of Woody Regeneration in an Old-Growth Forest. Ecology, 70, 1279-1285 https://doi.org/10.2307/1938187
 
WATSON D. J. (1947): Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Annals of Botany, 11, 41-76 https://doi.org/10.1093/oxfordjournals.aob.a083148
 
Welles Jon M. (1990): Some indirect methods of estimating canopy structure. Remote Sensing Reviews, 5, 31-43 https://doi.org/10.1080/02757259009532120
 
Welles Jon M., Cohen Shabtai (1996): Canopy structure measurement by gap fraction analysis using commercial instrumentation. Journal of Experimental Botany, 47, 1335-1342 https://doi.org/10.1093/jxb/47.9.1335
 
Zheng Guang, Moskal L. Monika (2009): Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9, 2719-2745 https://doi.org/10.3390/s90402719
 
download PDF

© 2019 Czech Academy of Agricultural Sciences