Quality of organic and upper mineral horizons of mature mountain beech stands with respect to herb layer species

https://doi.org/10.17221/116/2015-JFSCitation:Špulák O., Souček J., Dušek D. (2016): Quality of organic and upper mineral horizons of mature mountain beech stands with respect to herb layer species. J. For. Sci., 62: 163-174.
download PDF
The study analyses the chemical properties of the soil in open-canopy beech stands in relation to the predominant species of ground vegetation. A hypothesis is examined whether the predominant ground vegetation species can represent in chemical terms different site conditions. Four localities were used for testing reed grass, myrtle blueberry, wavy hair grass and vegetation-free patches. Samples were taken from three organic horizons (litter (OL), fragmented (OF) and humus (OH)) and from the humic first mineral horizon. Significant differences between the variants were found only in the OL horizon, in which the vegetation species explained 65% of the variability in data. The OL horizon in the vegetation-free variant showed the significantly lowest pH/KCl and the lowest potassium content. The most distinct particular differences were observed between the blueberry variant and the grass variants. Although the studied variants of vegetation growing under the beech stand represented significant differences in the litter horizon chemistry, the effects on the other humus horizons and on the upper mineral horizon were marginal.
References:
Aerts R., Chapin F.S. (1999): The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30: 1–67.
 
Andreasson Frida, Påhlsson Anna-Maj Balsberg, Bergkvist Bo (2012): Differences in soil organic matter, extractable nutrients, and acidity in European beech (Fagus sylvatica L.) forest soils related to the presence of ground flora. Journal of Forest Research, 17, 333-342  https://doi.org/10.1007/s10310-011-0297-y
 
Augusto Laurent, Dupouey Jean-Luc, Ranger Jacques (2003): Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science, 60, 823-831  https://doi.org/10.1051/forest:2003077
 
Barbier Stéphane, Gosselin Frédéric, Balandier Philippe (2008): Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. Forest Ecology and Management, 254, 1-15  https://doi.org/10.1016/j.foreco.2007.09.038
 
Bonifacio E., Santoni S., Cudlin P., Zanini E. (2008): Effect of dominant ground vegetation on soil organic matter quality in a declining mountain spruce forest in central Europe. Boreal Environment Research, 13: 113–120.
 
Borůvka Luboš, Podrázský Vilem, Mládková Lenka, Kuneš Ivan, Drábek Ondřej (2005): Some Approaches to the Research of Forest Soils Affected by Acidification in the Czech Republic. Soil Science and Plant Nutrition, 51, 745-749  https://doi.org/10.1111/j.1747-0765.2005.tb00105.x
 
BRIMHALL G. H, CHADWICK O. A., LEWIS C. J., COMPSTON W., WILLIAMS I. S., DANTI K. J., DIETRICH W. E., POWER M. E., HENDRICKS D., BRATT J. (1992): Deformational Mass Transport and Invasive Processes in Soil Evolution. Science, 255, 695-702  https://doi.org/10.1126/science.255.5045.695
 
Bruelheide Helge, Udelhoven Pit (2005): Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests. Forest Ecology and Management, 210, 205-223  https://doi.org/10.1016/j.foreco.2005.02.050
 
Ciavatta C., Antisari L. Vittori, Sequi P. (1989): Determination of organic carbon in soils and fertilizers. Communications in Soil Science and Plant Analysis, 20, 759-773  https://doi.org/10.1080/00103628909368115
 
Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D. (1992): Zeigerwerte von Pflanzen in Mitteleuropa. 2nd Ed. Göttingen, Goltze: 258.
 
Fiala K., Tůma I., Holub P., Jandák J. (2005): The role of Calamagrostis communities in preventing soil acidification and base cation losses in a deforested mountain area affected by acid deposition. Plant and Soil, 268, 35-49  https://doi.org/10.1007/s11104-004-0185-8
 
Finney J.D. (1988): Was this in your statistics textbook? III. Design and analysis. Experimental Agriculture, 24: 421–432.
 
Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgård B. (2004): The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management, 195, 373-384  https://doi.org/10.1016/j.foreco.2004.02.036
 
INGESTAD TORSTEN (1979): Mineral Nutrient Requirements of Pinus silvestris and Picea abies Seedlings. Physiologia Plantarum, 45, 373-380  https://doi.org/10.1111/j.1399-3054.1979.tb02599.x
 
IUSS Working Group WRB (2015): World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome, FAO: 192.
 
Janssens I. A., Dieleman W., Luyssaert S., Subke J-A., Reichstein M., Ceulemans R., Ciais P., Dolman A. J., Grace J., Matteucci G., Papale D., Piao S. L., Schulze E-D., Tang J., Law B.E. (): Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322  https://doi.org/10.1038/ngeo844
 
JONES D. L., BRASSINGTON D. S. (1998): Sorption of organic acids in acid soils and its implications in the rhizosphere. European Journal of Soil Science, 49, 447-455  https://doi.org/10.1046/j.1365-2389.1998.4930447.x
 
Kacálek D., Dušek D., Novák J., Bartoš J. (2013): The impact of juvenile tree species canopy on properties of new forest floor. Journal of Forest Science, 59: 230–237.
 
Kappen H (1929): Die Bodenazidität. Berlin, Springer: 363.
 
Kirk P L. (1950): Kjeldahl Method for Total Nitrogen. Analytical Chemistry, 22, 354-358  https://doi.org/10.1021/ac60038a038
 
Klimo E., Materna J., Lochman V., Kulhavý J. (2006): Forest soil acidification in the Czech Republic. Journal of Forest Science, 52 (Special Issue): 14–22.
 
Klinka K., Fons J., Krestov P. (1997): Towards a taxonomic classification of humus forms; third approximation. Scientia Silvica Extension Series, 9: 1–4.
 
Konopatzky A. (1995): Untersuchungen zum langjährigen Oberbodenzustandswandel in den Waldökosystemen der Dübener Heide. In: Hüttl R.F., Bellmann K. (eds): Atmosphärensanierung und Waldökosysteme. Taunusstein, Blottner Verlag: 210–226.
 
Koop H., Hilgen P. (1987): Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). Forest Ecology and Management, 20, 135-150  https://doi.org/10.1016/0378-1127(87)90155-1
 
Kopp D., Schwanecke W. (1994): Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft: Grundzüge von Verfahren und Ergebnissen der forstlichen Standortserkundung in den fünf ostdeutschen Bundesländern. Berlin, Deutscher Landwirtschaftsverlag: 248.
 
Kubát K., Hrouda L., Chrtek J., Kaplan Z., Kirchner J., Štěpánek J. (2002): Klíč ke květeně České republiky. Praha, Academia: 927.
 
Kuklová M., Kukla J. (2008): Accumulation of macronutrients in soils and some herb species of spruce ecosystems. Cereal Research Communications, 36: 1319–1322.
 
Levi-Minzi R., Saviozzi A., Cardelli R., Riffaldi R. (2000): The influence of beech and blueberry on soil surface horizons. Monti e Boschi, 51: 40–43.
 
Madsen Palle, Larsen Jørgen Bo (1997): Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content. Forest Ecology and Management, 97, 95-105  https://doi.org/10.1016/S0378-1127(97)00091-1
 
Martinák M., Ujházy K., Ujházyová M., Martináková M. (2014): Response of herb layer of fir-beech forests to tree species composition and stand structure change. Zprávy lesnického výzkumu, 59: 213–223.
 
Mařan B., Káš V. (1948): Biologie lesa. První díl: Pedologie a mikrobiologie lesních půd. Praha, Melantrich: 596.
 
Mataji A., Moarefvand P., Kafaki S. Babaie, Kermanshahi M. Madanipour (2010): Understory vegetation as environmental factors indicator in forest ecosystems. International Journal of Environmental Science & Technology, 7, 629-638  https://doi.org/10.1007/BF03326173
 
Mead R., Gilmour S.G., Mead A. (2012): Statistical Principles for the Design of Experiments: Applications to Real Experiments. Cambridge, Cambridge University Press: 586.
 
Mládková Lenka, Borůvka Luboš, Drábek Ondřej (2005): Soil Properties and Selected Aluminium Forms in Acid Forest Soils as Influenced by the Type of Stand Factors. Soil Science and Plant Nutrition, 51, 741-744  https://doi.org/10.1111/j.1747-0765.2005.tb00104.x
 
Modrý Martin, Hubený Dan, Rejšek Klement (2004): Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 188, 185-195  https://doi.org/10.1016/j.foreco.2003.07.029
 
MONTAGNE D., CORNU S., LE FORESTIER L., COUSIN I. (2009): Soil Drainage as an Active Agent of Recent Soil Evolution: A Review. Pedosphere, 19, 1-13  https://doi.org/10.1016/S1002-0160(08)60078-8
 
Moravec J. (1999): Bučiny a jedliny. In: Míchal I., Petříček V. (eds): Péče o chráněná území II. Lesní společenstva. Prague, Nature Conservation Agency of the Czech Republic: 421–534.
 
Nelder J.A. (1971): Discussion on the papers by Wynn, Bloomfield, O’Neill and Wetherill. Journal of the Royal Statistical Society, Series B, 33: 244–246.
 
Nelson D.W., Sommers L.E. (1996): Total carbon, organic carbon, and organic matter. In: Sparks D.L. (ed.): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, Soil Science Society of America, American Society of Agronomy: 961–1010.
 
Otto H.J. (1994): Waldökologie. Stuttgart, Ulmer: 391.
 
Pérez-Bejarano A., Mataix-Solera J., Zornoza R., Guerrero C., Arcenegui V., Mataix-Beneyto J., Cano-Amat S. (2010): Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. European Journal of Forest Research, 129, 15-24  https://doi.org/10.1007/s10342-008-0246-2
 
Perry D.A., Oren R., Hart S.C. (1995): Forest Ecosystems. London, John Hopkins University Press: 632.
 
Peřina V., Květ J. (1975): The effect of montane spruce thinning on the biomass production of the ground vegetation. Lesnictví, 21: 659–686.
 
Plíva K., Žlábek I. (1986): Přírodní lesní oblasti ČR. Praha, SZN: 313.
 
Prescott C E, Zabek L M, Staley C L, Kabzems R (2000): Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30, 1742-1750  https://doi.org/10.1139/x00-097
 
Průša E (2001): Pěstování lesů na typologických základech. Kostelec nad Černými lesy, Lesnická práce: 593.
 
R Development Core Team (2015): R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at http://www.r-project.org
 
Ritter E., Vesterdal L., Gundersen P. (2003): Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil, 249: 319–330. https://doi.org/10.1023/A:1022808410732
 
Sáňka M., Materna J. (2004): Indikátory kvality zemědělských a lesních půd ČR. Prague, Ministry of Agriculture of the Czech Republic: 84.
 
Singer M.J., Munns D.N. (1996): Soils. An Introduction. London, Prentice-Hall: 446.
 
Špulák O. (2008): Natural regeneration of beech and competition from weed in the summit part of the Jizerské hory Mts. (Czech Republic). Austrian Journal of Forest Science, 125: 79–88.
 
Svoboda Miroslav, Matějka Karel, Kopáček Jiří (2006): Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest. Biologia, 61, -  https://doi.org/10.2478/s11756-007-0074-8
 
Ter Braak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). New York, Microcomputer Power: 500.
 
Ulbrichová I., Kupka I., Podrázský V., Kubeček J., Fulín M. (2014): Douglas-fir as a soil improving species. Zprávy lesnického výzkumu, 59: 72–78.
 
Ulrich B. (1981): Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 289-305  https://doi.org/10.1002/jpln.19811440308
 
Vacek S., Vančura K., Zingari P.C., Jeník J., Simon J., Smejkal J. (2003): Mountain Forests of the Czech Republic. Prague, Ministry of Agriculture of the Czech Republic: 311.
 
Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74–82.
 
Zanella A., Jabiol B., Ponge J.F., Sartori G., De Waal R., Van Delft B., Graefe U., Cools N., Katzensteiner K., Hager H., Englisch M. (2011): A European morpho-functional classification of humus forms. Geoderma, 164, 138-145  https://doi.org/10.1016/j.geoderma.2011.05.016
 
Zbíral J. et al. (2001): Porovnání extrakčních postupů pro stanovení základních živin v půdách ČR. Brno, Ústřední kontrolní a zkušební ústav zemědělský: 205.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences