The impact of drought on total ozone flux in a mountain Norway spruce forest

https://doi.org/10.17221/129/2019-JFSCitation:Agyei T., Juráň S., Ofori-Amanfo K.K., Šigut L., Urban O., V. Marek M. (2020): The impact of drought on total ozone flux in a mountain Norway spruce forest. J. For. Sci., 66: 280-278.
download PDF

In order to understand the impact of summer drought on dry deposition of tropospheric ozone (O3), we compared severe and mild drought periods of summer 2018 in a mountain Norway spruce forest at Bílý Kříž, Beskydy Mts. An eddy covariance technique was applied to measure diurnal courses of the ecosystem O3 and CO2 fluxes. Low O3 deposition was recorded in the morning and evening, while the highest CO2 and O3 fluxes were recorded during the central hours of the day. Total O3 deposition during severe drought (soil humidity 13%) was significantly higher than the deposition during the mild drought period (soil humidity 19%). Our data indicate that high vapour pressure deficit and low soil humidity during severe drought led to the stomatal closure, while non-stomatal O3 deposition, associated with chemical reactions of O3 with NO and volatile organic compounds, are responsible for higher total O3 deposition during the severe drought period. Therefore, we assume that under severe drought stomatal O3 uptake decreases but non-stomatal depositions to forest ecosystems substantially increase.

References:
Aubinet M., Vesala T., Papale D. (2012): Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Dordrecht-Heidelberg-London-New York, Springer Science & Business Media: 438.
 
Cieslik S.A. (2004): Ozone uptake by various surface types: a comparison between dose and exposure. Atmospheric Environment, 38: 2409–2420. https://doi.org/10.1016/j.atmosenv.2003.10.063
 
Cooper O.R., Parrish D.D., Ziemke J., Balashov N.V., Cupeiro M., Galbally I.E., Gilge S., Horowitz L., Jensen N.R., Lamarque J.F., Naik V., Oltmans S.J., Schwab J., Shindell D.T., Thompson A.M., Thouret V., Wang Y., Zbinden R.M. (2014): Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene, 2: 000029.  https://doi.org/10.12952/journal.elementa.000029
 
Ducker J.A., Holmes C.D., Keenan T.F., Fares S., Goldstein A.H., Mammarella I., Munger J.W., Schnell J. (2018): Synthetic ozone deposition and stomatal uptake at flux tower sites. Biogeosciences, 15: 5395–5413. https://doi.org/10.5194/bg-15-5395-2018
 
Emberson L.D., Büker P., Ashmore M.R. (2007): Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech and oak across different climate regions. Environmental Pollution, 147: 454–466. https://doi.org/10.1016/j.envpol.2006.10.026
 
Emberson L.D., Ashmore M.R., Cambridge H.M., Simpson D., Tuovinen J.P. (2000): Modelling stomatal ozone flux across Europe. Environmental Pollution, 109: 403–413. https://doi.org/10.1016/S0269-7491(00)00043-9
 
Fall R. (1999): Biogenic emissions of volatile organic compounds from higher plants. In: Hewitt C.N. (ed.): Reactive Hydrocarbons in the Atmosphere. San Diego, Academic Press: 41–96.
 
Fares S., Weber R., Park J.H., Gentner D., Karlik J., Goldstein A.H. (2012): Ozone deposition to an orange orchard: partitioning between stomatal and non-stomatal sinks. Environmental Pollution, 169: 258–266.  https://doi.org/10.1016/j.envpol.2012.01.030
 
Farmer D.K., Cohen R.C. (2008): Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy. Atmospheric Chemistry and Physics, 8: 3899–3917. https://doi.org/10.5194/acp-8-3899-2008
 
Finkelstein P.L., Ellestad T.G., Clarke J.F., Meyers T.P., Schwede D.B., Hebert E.O. Neal J.A. (2000): Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation. Journal of Geophysical Research: Atmospheres, 105: 15365–15377. https://doi.org/10.1029/2000JD900185
 
Goldstein A.H., Mckay M., Kurpius M.R., Schade G.W., Lee A., Holzinger R. Rasmussen R.A. (2004): Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophysical Research Letters, 31: L22106. https://doi.org/10.1029/2004GL021259
 
Gerosa G., VItale M., Finco A., Manes F., Denti A.B., Cieslik S. (2005): Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: Micrometeorological flux measurements and flux partitioning. Atmospheric Environment, 39: 3255–3266.
 
Hogg A., Uddling J., Ellsworth D., Carroll M. A., Pressley S., Lamb B., Vogel C. (2007): Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus B: Chemical and Physical Meteorology, 59: 514–525. https://doi.org/10.1111/j.1600-0889.2007.00269.x
 
Juráň S., Edwards-Jonášová M., Cudlín P., Zapletal M., Šigut L., Grace J., Urban O. (2018): Prediction of ozone effects on net ecosystem production of Norway spruce forest. iForest-Biogeosciences and Forestry, 11: 743–750. https://doi.org/10.3832/ifor2805-011
 
Juráň S., Pallozzi E., Guidolotti G., Fares S., Šigut L., Calfapietra C., Alivernini A., Savi F., Večeřová K., Křůmal K., Večeřa Z., Urban O. (2017): Fluxes of biogenic volatile organic compounds above temperate Norway spruce forest of the Czech Republic. Agriculture and Forest Meteorology: 232, 500–513. https://doi.org/10.1016/j.agrformet.2016.10.005
 
Juráň S., Šigut L., Holub P., Fares S., Klem K., Grace J., Urban O. (2019): Ozone flux and ozone deposition in a mountain spruce forest are modulated by sky conditions. Science of The Total Environment, 672: 296–304. https://doi.org/10.1016/j.scitotenv.2019.03.491
 
Kronfuß G., Polle A., Tausz M., Havranek W.M., Wieser G. (1998): Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [Picea abies (L.) Karst.]. Trees, 12: 482–489. https://doi.org/10.1007/s004680050178
 
Kurpius M.R., Goldstein A.H. (2003): Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophysical Research Letters, 30: 1371 https://doi.org/10.1029/2002GL016785
 
Langner J., Bergström R., Foltescu V. (2005): Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. Atmospheric Environment, 39: 1129–1141. https://doi.org/10.1016/j.atmosenv.2004.09.082
 
Leighton P.A. (1961): Photochemistry of Air Pollution. San Diego, Academic Press: 312.
 
Lelieveld J., Dentener F.J. (2000): What controls tropospheric ozone? Journal of Geophysical Research: Atmospheres, 105: 3531–3551. https://doi.org/10.1029/1999JD901011
 
Li Q., Gabay M., Rubin Y., Fred J.E., Tas E. (2018): Measurement-based investigation of ozone deposition to vegetation under the effects of coastal and photochemical air pollution in the Eastern Mediterranean. Science of the Total Environment, 645: 1579–1597.  https://doi.org/10.1016/j.scitotenv.2018.07.037
 
Lyr H., Fiedler H.J., Tranquillini W. (1992): Physiology and Ecology of the Woody Plants. Jena, Fischer Publishing House: 620.
 
Matyssek R., Gunthardt-goerg M.S., Maureri S., Keller S. (1995): Nighttime exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiology, 15: 159–165. https://doi.org/10.1093/treephys/15.3.159
 
Meixner F.X., Yang W.X. (2006): Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land. In: D'Odorico P., Porporato A. (eds.): Dryland and Ecohydrology. Dordrecht, Kluwer Academic Publishers: 233–255.
 
Monks P.S., Granier C., Fuzzi S., Stohl A., Williams M.L., Akimoto H., Amann M., Baklanov, A., Baltensperger U., Bey I., Blake N. (2009): Atmospheric composition change – global and regional air quality. Atmospheric Environment, 43: 5268–5350. https://doi.org/10.1016/j.atmosenv.2009.08.021
 
Mills G., Hayes F., Simpson D., Emberson L., Norris D., Harmens H., Büker P. (2011): Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Global Change Biology, 17: 592–613. https://doi.org/10.1111/j.1365-2486.2010.02217.x
 
Panek J.A., Goldstein A.H. (2001): Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiology, 21: 337–344. https://doi.org/10.1093/treephys/21.5.337
 
Pio C.A., Feliciano M.S., Vermeulen A.T., Sousa E.C. (2000): Seasonal variability of ozone dry deposition under southern European climate conditions, in Portugal. Atmospheric Environment, 34: 195–205. https://doi.org/10.1016/S1352-2310(99)00276-9
 
Rannik Ü., Altimir N., Mammarella I., Bäck J., Rinne J., Ruuskanen T.M., Hari P., Vesala T., Kulmala M. (2012): Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables. Atmospheric Chemistry and Physics, 12: 12165–12182. https://doi.org/10.5194/acp-12-12165-2012
 
Reichstein M., Falge E., Baldocchi D., Papale D., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Gilmanov T., Granier A., Grünwald T. (2005): On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11: 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
 
Schade G.W., Goldstein A.H. (2001): Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. Journal of Geophysical Research-Atmospheres, 106: 3111–3123. https://doi.org/10.1029/2000JD900592
 
Schindlbacher A., Zechmeister-Boltenstern S. (2004): Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. Journal of Geophysical Research, 109: D17302. https://doi.org/10.1029/2004JD004590
 
Seneviratne S.I., Lüthi D., Litschi M., Schär C. (2006): Land–atmosphere coupling and climate change in Europe. Nature, 443: 205–209. https://doi.org/10.1038/nature05095
 
Solberg S., Hov Ø., Søvde A., Isaksen I.S.A., Coddeville P., De Backer H., Forster C., Orsolini Y., Uhse K. (2008): European surface ozone in the extreme summer 2003. Journal of Geophysical Research: Atmospheres, 113(D7). https://doi.org/10.1029/2007JD009098
 
Spiecker H. (2000): Growth of Norway Spruce (Picea abies (L.) Karst.) under changing environmental conditions in Europe. Spruce Monocultures in Central Europe: Problems and Prospects. In: Klimo E., Hager H., Kulhavy J. (eds.): European Forest Institute. European Forest Institute Proceedings, 33: 11–26.
 
Trnka M., Balek J., Štěpánek P., Zahradníček P., Možný M., Eitzinger J., Žalud Z., Formayer H., Turňa M., Nejedlík P., Semerádová D., Hlavinka P., Brázdil R. (2016): Drought trends over Central Europe between 1961 and 2014. Climate Research, 70: 143–160. https://doi.org/10.3354/cr01420
 
Tuzet A., Perrier A., Loubet B., Cellier P. (2011): Modelling ozone deposition fluxes: The relative roles of deposition and detoxification processes. Agricultural and Forest Meteorology, 151: 480–492. https://doi.org/10.1016/j.agrformet.2010.12.004
 
Wildt J., Kley D., Rockel A., Rockel P., Segschneider H.J. (1997): Emission of NO from several higher plant species. Journal of Geophysical Research: Atmospheres, 102: 5919–5927.  https://doi.org/10.1029/96JD02968
 
Zapletal M., Cudlín P., Chroust P., Urban O., Pokorný R., Edwards-Jonášová M., Czerný R., Janouš D., Taufarová K., Večeřa Z., Mikuška P. (2011): Ozone flux over a Norway spruce forest and correlation with net ecosystem production. Environmental Pollution, 159: 1024–1034.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences