Modelling individual tree diameter growth for Norway spruce in the Czech Republic using a generalized algebraic difference approach

https://doi.org/10.17221/135/2016-JFSCitation:Sharma R.P., Vacek Z., Vacek S., Jansa V., Kučera M. (2017): Modelling individual tree diameter growth for Norway spruce in the Czech Republic using a generalized algebraic difference approach. J. For. Sci., 63: 227-238.
download PDF
Individual tree-based growth models precisely describe the growth of individual trees irrespective of stand complexity. These models are more useful than the stand-based growth models for effective management of forests. We developed an individual tree diameter growth model for Norway spruce (Picea abies /Linnaeus/ H. Karsten) using permanent research plot data collected from Krkonoše National Park in the Czech Republic. The model was tested against a part of the Czech National Forest Inventory (NFI) data that originated from the western region of the country. Among various models derived by a generalized algebraic difference approach (GADA), the GADA model derived from the Chapman-Richards function best suited to our data. Tree-specific parameters unique to each growth series, which describe tree-specific growth conditions, were estimated simultaneously with global parameters common to all growth series using the iterative nested regressions. The model described most of the variations in diameter growth for model calibration data (R2adj = 0.9901, RMSE = 0.5962), leaving no significant trends in the residuals. A test against NFI data also confirms that the model is precise enough for predictions of diameter growth for ranges of site quality, tree size, age, and growth condition. The model also possesses biologically desirable properties because it produces the curves with growth rates and asymptotes that increase with increasing site quality. The GADA model is path-invariant and therefore applicable for both forward and backward predictions, meaning that the model can precisely predict diameter growth at any past ages of the trees.
References:
Adame Patricia, Hynynen Jari, Cañellas Isabel, del Río Miren (2008): Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. Forest Ecology and Management, 255, 1011-1022  https://doi.org/10.1016/j.foreco.2007.10.019
 
Amaro A., Reed D., Soares P. (2003): Modelling Forest Systems. 1st Ed. Wallingford, CABI Publishing: 432.
 
Andreassen Kjell, Tomter Stein M. (2003): Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway. Forest Ecology and Management, 180, 11-24  https://doi.org/10.1016/S0378-1127(02)00560-1
 
Bailey R.L., Clutter J.L. (1974): Base-age invariant polymorphic site curves. Forest Science, 20: 155–159.
 
Banerjee S., Carlin B.P., Gelfand A.E. (2014): Hierarchical Modeling and Analysis for Spatial Data. 2nd Ed. Boca Raton, Chapman and Hall/CRC: 584.
 
Anta Marcos Barrio, Dorado Fernando Castedo, Diéguez-Aranda Ulises, Álvarez González Juan G, Parresol Bernard R, Soalleiro Roque Rodríguez (2006): Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Canadian Journal of Forest Research, 36, 1461-1474  https://doi.org/10.1139/x06-028
 
Biging G.S., Dobbertin M. (1992): Comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. Forest Science, 38: 695–720.
 
Bollandsås Ole Martin, Næsset Erik (2009): Weibull models for single-tree increment of Norway spruce, Scots pine, birch and other broadleaves in Norway. Scandinavian Journal of Forest Research, 24, 54-66  https://doi.org/10.1080/02827580802477875
 
Castedo-Dorado Fernando, Diéguez-Aranda Ulises, Barrio-Anta Marcos, Álvarez-Gonzàlez Juan Gabriel (2007): Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Annals of Forest Science, 64, 609-619  https://doi.org/10.1051/forest:2007039
 
Chapman D.G. (1961): Statistical problems in dynamics of exploited fisheries populations. In: Neyman J. (ed.): Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, June 20–July 30, 1960: 153–168.
 
Cieszewski C J (2001): Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research, 31, 165-173  https://doi.org/10.1139/x00-132
 
Cieszewski C.J. (2002): Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. Forest Science, 48: 7–23.
 
Cieszewski C.J. (2003): Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y 3 = (axm)/(c + xm–1), a simplified mixed-model and scant subalpine fir data. Forest Science, 49: 539–554.
 
Cieszewski C.J., Bailey R.L. (2000): Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 46: 116–126.
 
Cieszewski C.J., Strub M. (2008): Generalized algebraic difference approach derivation of dynamic site equations with polymorphism and variable asymptotes from exponential and logarithmic functions. Forest Science, 54: 303–315.
 
Cieszewski C.J., Harrison M., Martin S.W. (2000): Practical Methods for Estimating Non-biased Parameters in Self-referencing Growth and Yield Models. Plantation Management Research Cooperative (PMRC) Technical Report 2000–7. Athens, University of Georgia: 11.
 
Cieszewski Chris J., Strub Mike, Zasada Michał (2007): New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe. Forest Ecology and Management, 243, 83-93  https://doi.org/10.1016/j.foreco.2007.02.025
 
Crecente-Campo Felipe, Soares Paula, Tomé Margarida, Diéguez-Aranda Ulises (2010): Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest Ecology and Management, 260, 1965-1974  https://doi.org/10.1016/j.foreco.2010.08.044
 
Diéguez-Aranda Ulises, Burkhart Harold E., Rodríguez-Soalleiro Roque (2005): Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. Forest Ecology and Management, 215, 271-284  https://doi.org/10.1016/j.foreco.2005.05.015
 
FMI (2003): Inventarizace lesů, metodika venkovního sběru dat. Brandýs nad Labem, Forest Management Institute: 136.
 
García Oscar (1994): The state-space approach in growth modelling. Canadian Journal of Forest Research, 24, 1894-1903  https://doi.org/10.1139/x94-244
 
García O. (2005): Comparing and combining stem analysis and permanent sample plot data in site index models. Forest Science, 51: 277–283.
 
Hasenauer H.E. (2006): Sustainable Forest Management: Growth Models for Europe. Berlin, Heidelberg, Springer-Verlag: 388.
 
Huang Shongming, Titus Stephen J. (1995): An individual tree diameter increment model for white spruce in Alberta. Canadian Journal of Forest Research, 25, 1455-1465  https://doi.org/10.1139/x95-158
 
Huuskonen Saija, Miina Jari (2007): Stand-level growth models for young Scots pine stands in Finland. Forest Ecology and Management, 241, 49-61  https://doi.org/10.1016/j.foreco.2006.12.024
 
IFER (2016): Field-map Software and Hardware Catalogue. Jílové u Prahy, Institute of Forest Ecosystem Research – Mon-itoring and Mapping Solutions, Ltd.: 50.
 
Kozak A., Kozak R. (2003): Does cross validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research, 33: 976–987.
 
Krumland B., Eng H. (2005): Site Index Systems for Major Young-growth Forest and Woodland Species in Northern Cal-ifornia. Sacramento, California Department of Forestry and Fire Protection: 219.
 
Kučera M. (2015): Národní inventarizace lesů České republiky. In: Vašíček J., Skála V. (eds): XVIII. Sněm lesníků. Národní inventarizace lesů, Hradec Králové, Nov 10, 2015: 7–13.
 
Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., Schabenberger O. (2006): SAS for Mixed Models. 2nd Ed. Cary, SAS Institute: 814.
 
Makinen H. (2004): Thinning intensity and growth of Norway spruce stands in Finland. Forestry, 77, 349-364  https://doi.org/10.1093/forestry/77.4.349
 
Martín-Benito Dario, Gea-Izquierdo Guillermo, del Río Miren, Cañellas Isabel (2008): Long-term trends in dominant-height growth of black pine using dynamic models. Forest Ecology and Management, 256, 1230-1238  https://doi.org/10.1016/j.foreco.2008.06.024
 
Montgomery D.C., Peck E.A., Vining G.G. (2001): Introduction to Linear Regression Analysis. 3rd Ed. New York, Wiley: 641.
 
Nigh Gordon, Aravanopoulos Filippos A. (2015): Engelmann Spruce Site Index Models: A Comparison of Model Functions and Parameterizations. PLOS ONE, 10, e0124079-  https://doi.org/10.1371/journal.pone.0124079
 
Nord-Larsen T. (2006): Developing dynamic site index curves for European beech (Fagus sylvatica L.) in Denmark. Forest Science, 52: 173–181.
 
Nord-Larsen Thomas, Meilby Henrik, Skovsgaard Jens Peter (2009): Site-specific height growth models for six common tree species in Denmark. Scandinavian Journal of Forest Research, 24, 194-204  https://doi.org/10.1080/02827580902795036
 
Pienaar L.V., Rheney J.W. (1995): Modeling stand level growth and yield response to silvicultural treatments. Forest Science, 41: 629–638.
 
Pinheiro J.C, Bates D.M. (2000): Mixed-effects Models in S and S-PLUS. New York, Springer-Verlag: 528.
 
Porté A., Bartelink H.H. (2002): Modelling mixed forest growth: a review of models for forest management. Ecological Modelling, 150, 141-188  https://doi.org/10.1016/S0304-3800(01)00476-8
 
Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Springer-Verlag: 664.
 
Pretzsch H., Biber P., Ďurský J. (2002): The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management, 162, 3-21  https://doi.org/10.1016/S0378-1127(02)00047-6
 
RICHARDS F. J. (1959): A Flexible Growth Function for Empirical Use. Journal of Experimental Botany, 10, 290-301  https://doi.org/10.1093/jxb/10.2.290
 
SAS Institute, Inc. (2013): Base SAS 9.4 Procedure Guide: Statistical Procedures. 2nd Ed. Cary, SAS Institute, Inc.: 556.
 
Sharma Ram P., Brunner Andreas (2016): Modeling individual tree height growth of Norway spruce and Scots pine from national forest inventory data in Norway. Scandinavian Journal of Forest Research, 32, 501-514  https://doi.org/10.1080/02827581.2016.1269944
 
Sharma Ram P., Vacek Zdeněk, Vacek Stanislav (2016): Individual tree crown width models for Norway spruce and European beech in Czech Republic. Forest Ecology and Management, 366, 208-220  https://doi.org/10.1016/j.foreco.2016.01.040
 
Sharma Ram P., Brunner Andreas, Eid Tron, Øyen Bernt-Håvard (2011): Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management, 262, 2162-2175  https://doi.org/10.1016/j.foreco.2011.07.037
 
Subedi Nirmal, Sharma Mahadev (2011): Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario. Forest Ecology and Management, 261, 2140-2148  https://doi.org/10.1016/j.foreco.2011.03.010
 
Tang Xiaolu, Fehrmann Lutz, Guan Fengying, Forrester David I., Guisasola Rubén, Pérez-Cruzado César, Vor Torsten, Lu Yuanchang, Álvarez-González Juan Gabriel, Kleinn Christoph (2017): A generalized algebraic difference approach allows an improved estimation of aboveground biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla forests. Annals of Forest Science, 74, -  https://doi.org/10.1007/s13595-016-0603-0
 
Uzoh Fabian C.C., Oliver William W. (2008): Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology and Management, 256, 438-445  https://doi.org/10.1016/j.foreco.2008.04.046
 
Vacek Stanislav, Hejcman Michal (2012): Natural layering, foliation, fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts., Czech Republic. European Journal of Forest Research, 131, 799-810  https://doi.org/10.1007/s10342-011-0553-x
 
Vacek Zdeněk, Vacek Stanislav, Bílek Lukáš, Remeš Jiří, Štefančík Igor (2015): Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology, 73, 33-45  https://doi.org/10.12657/denbio.073.004
 
Vanclay J.K. (1994): Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford, CABI: 312.
 
von Gadow K., Hui G.Y. (1999): Modelling Forest Development. Dordrecht, Kluwer: 213.
 
Vonesh E.F., Chinchilli V.M. (1996): Linear and Nonlinear Models for the Analysis of Repeated Measurements. Boca Raton, CRC Press: 560.
 
Vospernik Sonja, Monserud Robert A., Sterba Hubert (2015): Comparing individual-tree growth models using principles of stand growth for Norway spruce, Scots pine, and European beech. Canadian Journal of Forest Research, 45, 1006-1018  https://doi.org/10.1139/cjfr-2014-0394
 
Wykoff W.R. (1990): A basal area increment model for individual conifers in the Northern Rocky Mountain. Forest Science, 36: 1077–1104.
 
Yue Chaofang, Kahle Hans-Peter, Kohnle Ulrich, Zhang Qing, Kang Xingang (2014): Detecting trends in diameter growth of Norway spruce on long-term forest research plots using linear mixed-effects models. European Journal of Forest Research, 133, 783-792  https://doi.org/10.1007/s10342-014-0795-5
 
Yang Y.Q., Huang S.M. (2011a): Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Canadian Journal of Forest Research, 41: 1671–1686.
 
Yang Y.Q., Huang S.M. (2011b): Estimating a multilevel dominant height-age model from nested data with generalized errors. Forest Science, 57: 102–116.
 
Yang Yuqing, Monserud Robert A, Huang Shongming (2004): An evaluation of diagnostic tests and their roles in validating forest biometric models. Canadian Journal of Forest Research, 34, 619-629  https://doi.org/10.1139/x03-230
 
download PDF

© 2020 Czech Academy of Agricultural Sciences