Norway spruce phenotype variability determined by needle anatomy in Bohemian Forest compared to other regions of the Czech Republic

Matějka K., Krpeš V. (2022): Norway spruce phenotype variability determined by needle anatomy in Bohemian Forest compared to other regions of the Czech Republic. J. For. Sci., 68: 473–483.

download PDF

Young trees (saplings) of the Norway spruce (Picea abies [L.] Karst.) regenerating populations were analysed on 7 plots in the Šumava Mts. (Bohemian Forest), on 5 plots in the Jeseníky Mts. (Eastern Sudetes), and 1 plot in the Krkonoše (Giant Mts.). All 13 plots were located at the forest altitudinal (vegetation) zones of natural Picea abies stands. Each selected tree was characterized by microscopic features of the first-year needles. The free-hand needle cross-sections were prepared from three needles of each tree and measured by digital microphotos. The following needle characteristics were measured: width, thickness, and vascular bundle diameter. Each population was described by variability of these parameters. Populations were classified based on the data set. Two artificially planted populations were most different. Populations resulting in natural stands have different phenotype variability, possibly as a result of the parent stand history: two extreme examples are Eustaška locality (Jeseníky Mts.) with no known disturbance, and Trojmezí locality (Šumava Mts.), where wind and bark beetle disturbances were repeatedly recorded.

Apple M., Tiekotter K., Snow M., Young J., Soeldner A., Phillips D., Tingey D., Bond B.J. (2002): Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiology, 22: 129–136.
Bohn U., Gollub G., Hettwer C., Neuhäuslová Z., Schüter H., Weber H. (2003): Map of the Natural Vegetation of Europe. Scale 1 : 2 500 000. Bonn, Federal Agency for Nature Conservation: 530.
Bracegirdle B., Miles P.H. (1971): Atlas of Plant Structure. Volume I. London, Heinemann Educational Books, London: 121.
Čada V., Svoboda M. (2011): Structure and origin of mountain Norway spruce in the Bohemian Forest. Journal of Forest Science, 57: 523–535.
Čada V., Svoboda M., Janda P. (2013): Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 295: 59–68.
Caré O., Gailing O., Müller M., Krutovsky K.V., Leinemann L. (2020): Crown morphology in Norway spruce (Picea abies [Karst.] L.) as adaptation to mountainous environments is associated with single nucleotide polymorphisms (SNPs) in genes regulating seasonal growth rhythm. Tree Genetics and Genomes, 16: 4.
Cudlín P., Novotný R., Moravec I., Chmelíková E. (2001): Retrospective evaluation of the response of montane forest ecosystems to multiple stress. Ekológia (Bratislava), 20: 108–124.
Di Pierro E.A., Mosca E., González-Martínez S.C., Binelli G., Neale D.B., La Porta N. (2017): Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. Forest Ecology and Management, 405: 350–359.
Fanta J. (1974): Morphologische Variabilität der Fichte und Grundzüge der genetischen Rekonstruction der Gebirgsfichtenwälder im Krkonoše Nationalpark (ČSSR). Archiv für Naturschutz und Landschaftsforschung, 14: 179–200. (in German)
Frank A., Sperisen C., Howe G.T., Brang P., Walthert L., St. Clair J.B., Heiri C. (2016): Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology, 98: 211–227.
Gömöry D., Longauer R., Hlásny T., Pacalaj M., Strmeň S., Krajmerová D. (2012): Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131: 401–411.
Gömöry D., Comps B., Paule L., von Wühlisch G. (2013): Allozyme and phenotypic variation in beech (Fagus sylvatica L.): Are there any links? Plant Biosystems, 147: 265–271.
Gruber F. (1986): Beitrage zum morphogenetischen Zyklus der Knospe, zur Phylotaxis und zum Tribwachstum der Fichte (Picea abies (L.) Karst.) auf unterschidlichen Standorten. Göttingen, Forschungszentrum Waldökosysteme: 215. (in German)
Gruber F. (1988): Aufbau und Anpassungsfähigkeit der Krone von Picea abies (L.) Karst. Flora, 181: 205–242. (in German)
Hallé F. Oldeman R.A.A., Tomlinson P.B. (1978): Tropical Trees and Forests. An Architectural Analysis. Berlin, Heidelberg, New York, Springer-Verlag: 441.
Hrivnák M., Krajmerová D., Gömöry D. (2019): Lack of signals of selection at candidate loci at a small geographical scale along a steep altitudinal gradient in Norway spruce (Picea abies [L.] Karst.). Acta Biologica Cracoviensia, Series Botanica, 61: 43–51.
Hrivnák M., Krajmerová D., Kurjak D., Konôpková A., Magni F., Scaglione D., Ditmarová Ľ., Jamnická G., Marešová J., Gömöry D. (2022): Differential associations between nucleotide polymorphisms and physiological traits in Norway spruce (Picea abies Karst.) plants under contrasting water regimes. Forestry: An International Journal of Forest Research: 95: 686–697.
Ivanek O., Matějka K., Novotný P. (2009): Genetic structure of two parts of Norway spruce stand near the alpine forest limit in the Krkonoše National Park. Zprávy lesnického výzkumu, 54: 300–306. (in Czech)
Janda P., Bače R., Svoboda M., Starý M. (2010): Temporal and spatial structure of the mountain Norway spruce forest in the core zone of “Trojmezná” in the Šumava NP. Silva Gabreta, 16: 43–59. (in Czech)
Jurásek A., Leugner J., Martincová J. (2009): Effect of initial height of seedlings on the growth of planting material of Norway spruce (Picea abies [L.] Karst.) in mountain conditions. Journal of Forest Science, 55: 112–118.
Kindlmann P., Matějka K., Doležal P. (2012): Lesy Šumavy, lýkožrout a ochrana přírody. Praha, Karolinum: 326. (in Czech)
Kivimäenpää M., Jönsson A.M., Stjernquist I., Selldén G., Sutinen S. (2004): The use of light and electron microscopy to assess the impact of ozone on Norway spruce needles. Environmental Pollution, 127: 441–453.
Matějka K. (2014): Smrk (Picea abies) a horské lesy ČR. Available at: (in Czech).
Matějka K. (2017): Multivariate analysis for assessment of the tree populations based on dendrometric data with an example of similarity among Norway spruce subpopulations. Journal of Forest Science, 63: 449–456.
Matějka K. (2020): Nápověda k programu DBreleve. Databáze fytocenologických snímků, verze 2.5. Available at: (in Czech).
Matějka K., Leugner J., Krpeš V. (2014): Phenotype features in juvenile populations of Picea abies and their growth. Journal of Forest Science, 60: 96–108.
Pacalaj M., Longauer R., Krajmerová D., Gömöry D. (2002): Effect of site altitude on the growth and survival of Norway spruce (Picea abies L.) provenances on the Slovak plots of IUFRO experiment 1972. Journal of Forest Science, 48: 16–26.
Romšáková I., Foffová E., Kmeť J., Longauer R., Pacalaj M., Gömöry D. (2012): Nucleotide polymorphisms related to altitude and physiological traits in contrasting provenances of Norway spruce (Picea abies). Biologia, 67: 909–916.
Samek V. (1964): Metodika výzkumu morfologické pro-měnlivosti smrku z hlediska fytogeografického. Zprávy lesnického výzkumu, 10: 18–25. (in Czech)
Schmidt-Vogt H. (1977): Die Fichte. Ein Handbuch in zwei Bänden. Band I. Hamburg, Berlin, Verlag Paul Parey: 647. (in German)
Schulze E.D., Lange O.L., Oren R. (1989): Forest Decline and Air Pollution. A Study of Spruce (Picea abies) on Acid Soils. Berlin, Springer: 493.
Svoboda M., Podrázský V. (2005): Forest decline and pedobiological characteristics of humus forms in the Šumava National Park. Journal of Forest Science, 51: 141–146.
Šnytr O., Mánek J. (2010): Genetic structure of partial Norway spruce populations in Jizerské hory Mts. Opera Corcontica, 47: 231–250. (in Czech)
Štefančík I., Vacek S., Podrázský V. (2018): The most significant results of long-term research on silviculture experiments focusing on spruce and beech in the territory of the former Czechoslovakia. Central European Forestry Journal, 64: 180–194.
Tollefsrud M.M., Kissling R., Gugerli F., Johnsen O., Skroppa T., Cheddadi R., van der Knaap W.O., Latalowa M., Terhürne-Berson R., Litt T., Geburek T., Brochmann C., Sperisen C. (2008): Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology, 17: 4134–4150.
Tuomisto H., Neuvonen S. (1993): How to quantify differences in epicuticular wax morphology of Picea abies (L.) Karst. needles. New Phytologist, 123: 787–799.
Vacek S., Matějka K. (2010): State and development of phytocenoses on research plots in the Krkonoše Mts. forest stands. Journal of Forest Science, 56: 505–517.
Vacek S., Vacek Z., Ulbrichová I., Remeš J., Podrázský V., Vach M., Bulušek D., Král J., Putalová T. (2019): The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scandinavian Journal of Forest Research, 34: 267–281.
Viewegh J., Cambalova H. (1993): Variableness of hybrid swarm Pinus-x-celakovskiorum A. et Gr. processed with some cluster analyses methods. Biologia, 48: 39–44.
Wang J., Ma J., Ouyang F., Wang J., Song L., Kong L., Zhang H. (2021): Instrinsic relationship among needle morphology, anatomy, gas exchanges and tree growth across 17 Picea species. New Forests, 52: 509–535.
Ward M.H. (2005): Age-related trends in red spruce needle anatomy and their relationship to declining productivity. [Ph.D. Thesis.] Orono, The University of Maine.
Westergren M., Bozic G., Kraigher H. (2018): Genetic diversity of core vs. peripheral Norway spruce native populations at a local scale in Slovenia. iForest – Biogeosciences and Forestry, 11: 104–110.
Wieser G., Tegischer K., Tausz M., Häberle K.H., Grams T.E.E., Matyssek R. (2002): Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: A novel approach relating stress avoidance to defense. Tree Physiology, 22: 583–590.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti