Efficacy of synthetic lures for pine bark beetle monitoring


Knížek M., Liška J., Véle A. (2022): Efficacy of synthetic lures for pine bark beetle monitoring. J. For. Sci., 68: 19–25.

download PDF

The Scots pine (Pinus sylvestris) plantations in central Europe are currently damaged by a large-scale infestation by bark beetles (Scolytinae). Ips acuminatus and Ips sexdentatus are among the most aggressive species causing infestations of pine trees that are currently simultaneously attacked by Ips typographus. In pine plantations prone to damage, it is therefore necessary to carry out the bark beetle monitoring. One of the used methods is the pheromone bark beetle trapping using synthetic lures. The efficacy of synthetic lures differs. We tested the efficacy of commercially available lures used in the protection of pine trees. In total, we deployed 10 trap series, each consisting of traps with eight different lures and two unbaited traps (controls). Ips acuminatus and I. sexdentatus were most abundantly captured in Pheagr-IAC- and Sexowit-baited traps. Interestingly, the spruce species I. typographus was also captured and most often found in traps with Pheagr-IAC and Erosowit Tube lures. The number of captured beetles was consistent with the gradation phase of bark beetles. Our results suggest the suitability of pheromone traps for bark beetle monitoring. The use of Sexowit can be recommended especially in southwestern Moravia, where I. sexdentatus occurs in high numbers in the long run. In other parts of the Czech Republic, Pheagr-IAC alone can be used with sufficient efficacy. The use of the Erosowit Tube lure is also suitable for I. typographus and I. sexdentatus monitoring.

Bakke A. (1978): Aggregation pheromone components of the bark beetle Ips acuminatus. Oikos, 31: 184–188. https://doi.org/10.2307/3543561
Birgersson G., Schlyter F., Löfqvist J., Bergström G. (1984): Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. Journal of Chemical Ecology, 10: 1029–1055. https://doi.org/10.1007/BF00987511
Birgersson G., Schlyter F., Bergström G., Löfqvist J. (1988): Individual variation in aggregation pheromone content of the bark beetle, Ips typographus. Journal of Chemical Ecology, 14: 1737–1761. https://doi.org/10.1007/BF01014641
Blomquist G.J., Figueroa-Teran R., Aw M., Song M., Gorzalski A., Abbott N.L., Chang E., Tittiger C. (2010): Pheromone production in bark beetles. Insect Biochemistry and Molecular Biology, 40: 699–712. https://doi.org/10.1016/j.ibmb.2010.07.013
Blumroeder J.S., Burova N., Winter S., Goroncy A., Hobson P.R., Shegolev A., Dobrynin D., Amosova I., Ilina O., Parinova T., Volkov A., Graebener U.F., Ibisch P.L. (2019): Ecological effects of clearcutting practices in a boreal forest (Arkhangelsk Region, Russian Federation) both with and without FSC certification. Ecological Indicators, 106: 105461. https://doi.org/10.1016/j.ecolind.2019.105461
Borrelli P., Panagos P., Märker M., Modugno S., Schütt B. (2017): Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. CATENA, 149: 770–781. https://doi.org/10.1016/j.catena.2016.02.017
Byers J.A. (1989): Chemical ecology of bark beetles. Experientia, 45: 271–283. https://doi.org/10.1007/BF01951813
Chinellato F., Battisti A., Finozzi V., Faccoli M. (2014): Better today but worse tomorrow: How warm summers affect breeding performance of a Scots pine pest. Agrochimica, 58: 133–145.
Colombari F., Schroeder M.L., Battisti A., Faccoli M. (2013): Spatio-temporal dynamics of an Ips acuminatus outbreak and implications for management. Agricultural and Forest Entomology, 15: 34–42. https://doi.org/10.1111/j.1461-9563.2012.00589.x
ČHMÚ (2021): Mapy charakteristik klimatu – Dlouhodobý průměr 1981–2010. Available at: https://www.chmi.cz/historicka-data/pocasi/mapy-charakteristik-klimatu (Accessed December 7, 2021; in Czech).
Denis D.J. (2019): SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics. Hoboken, Wiley: 205.
Dickens J.C., Payne T.L. (1977): Bark beetle olfaction: Pheromone receptor system in Dendroctonus frontalis. Journal of Insect Physiology, 23: 481–489. https://doi.org/10.1016/0022-1910(77)90258-X
Duelli P., Zahradnik P., Knizek M., Kalinova B. (1997): Migration in spruce bark beetles (Ips typographus L.) and the efficiency of pheromone traps. Journal of Applied Entomology, 121: 297–303. https://doi.org/10.1111/j.1439-0418.1997.tb01409.x
Erbilgin N., Krokene P., Kvamme T., Christiansen E. (2007): A host monoterpene influences Ips typographus (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone. Agricultural and Forest Entomology, 9: 135–140. https://doi.org/10.1111/j.1461-9563.2007.00329.x
Etxebeste I., Álvarez G., Pérez G., Pajares J.A. (2012): Field response of the six-toothed pine bark beetle, Ips sexdentatus (Col.: Curculionidae, Scolytinae), to pheromonal blend candidates. Journal of Applied Entomology, 136: 431–444. https://doi.org/10.1111/j.1439-0418.2011.01682.x
Faccoli M., Finozzi V., Colombari F. (2012): Effectiveness of different trapping protocols for outbreak management of the engraver pine beetle Ips acuminatus (Curculionidae, Scolytinae). International Journal of Pest Management, 58: 267–273. https://doi.org/10.1080/09670874.2011.642824
Foit J., Čermák V. (2014): Colonization of disturbed Scots pine trees by bark‐ and wood‐boring beetles. Agricultural and Forest Entomology, 16: 184–195. https://doi.org/10.1111/afe.12048
Francke W., Pan M.-L., Bartels J., König W.A., Vité J.P., Krawielitzki S., Kohnle U. (1986): The odour bouquet of three pine engraver beetles (Ips spp.). Journal of Applied Entomology, 101: 453–461. https://doi.org/10.1111/j.1439-0418.1986.tb00879.x
Furuta K., Iguchi K., Lawson S. (1996): Seasonal difference in the abundance of the spruce beetle (Ips typographus japonicus Niijima) (Col., Scolytidae) within and outside forest in a bivoltine area. Journal of Applied Entomology, 120: 125–129. https://doi.org/10.1111/j.1439-0418.1996.tb01578.x
Galko J., Nikolov C., Kunca A., Vakula J., Gubka A., Zúbrik M., Rell S., Konôpka B. (2016): Effectiveness of pheromone traps for the European spruce bark beetle: A comparative study of four commercial products and two new models. Lesnický časopis – Forestry Journal, 62: 207–215. https://doi.org/10.1515/forj-2016-0027
Giesen H., Kohnle U., Vité J.P., Pan M.-L., Francke W. (1984): Das Aggregationspheromon des mediterranen Kiefernborkenkäfers Ips (Orthotomicus) erosus. Zeitschrift für Angewandte Entomologie, 98: 95–97. (in German) https://doi.org/10.1111/j.1439-0418.1984.tb02688.x
Gries G., Nolte R., Sanders W. (1989): Computer simulated host selection in Ips typographus. Entomologia Experimentalis et Applicata, 53: 211–217. https://doi.org/10.1111/j.1570-7458.1989.tb03568.x
Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. (2021): Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075
Jactel H., Gaillard J. (1991): A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Col., Scolytidae) with an automatically recording flight mill. Journal of Applied Entomology, 112: 138–145. https://doi.org/10.1111/j.1439-0418.1991.tb01039.x
Kirisits T. (2007): Fungal associates of European bark beetles with special emphasis on the Ophiostomatoid fungi. In: Lieutier F., Day K.R., Battisti A., Grégoire J.-C., Evans H.F. (eds): Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis. Dordrecht, Springer: 181–236.
Klimetzek D., Vité J.P. (1986): Die Wirkung insektenbürtiger Duftstoffe auf das Aggregationsverhalten des mediterranen Kiefernborkenkäfers Orthotomicus erosus. Zeitschrift fur Angewandte Entomologie, 101: 239–243. https://doi.org/10.1111/j.1439-0418.1986.tb00854.x
Knížek M. (2020): Lýkožrout borový (Ips sexdenatus). Lesnická práce, 99 (příloha): 4. (in Czech)
Kohnle U., Meyer M., Kluber J. (1992): Formulation of population attractant for the pine nark beetle, Ips sexdentatus (Col, Scolytidae). Allgemeine Forst und Jagdzeitung, 163: 81–87.
Komonen A., Schroeder L.M., Weslien J. (2011): Ips typographus population development after a severe storm in a nature reserve in southern Sweden. Journal of Applied Entomology, 135: 132–141. https://doi.org/10.1111/j.1439-0418.2010.01520.x
Krokene P., Solheim H. (1996): Fungal associates of five bark beetle species colonizing Norway spruce. Canadian Journal of Forest Research, 26: 2115–2122. https://doi.org/10.1139/x26-240
Kunca A., Zúbrik M., Galko J., Vakula J., Leontovyč R., Konôpka B., Nikolov C., Gubka A., Longauerová V., Maľová M., Rell S., Lalík M. (2019): Salvage felling in the Slovak Republic’s forests during the last twenty years (1998–2017). Central European Forestry Journal, 65: 3–11.
Lieutier F. (2007). Host resistance to bark beetles and its variations. In: Lieutier F., Day K.R., Battisti A., Grégoire J.-C., Evans H.F. (eds.): Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis. Dordrecht, Springer: 135–180.
Lindelöw Å., Schroeder M. (2001): Spruce bark beetle, Ips typographus (L.), in Sweden: Monitoring and risk assessment. Journal of Forest Science, 47: 40–42.
Liška J., Knížek M., Véle A. (2021): Evaluation of insect pest occurrence in areas of calamitous mortality of Scots pine. Central European Forestry Journal, 67: 85–90. https://doi.org/10.2478/forj-2021-0006
Lobinger G., Skatulla U. (1996): Untersuchungen zum Einfluß von Sonnenlicht auf das Schwärmverhalten von Borkenkäfern. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 69: 183–185. (in German) https://doi.org/10.1007/BF01908442
Lubojacký J., Knížek M. (2021): Podkorní hmyz. In: Knížek M., Liška J. (eds): Výskyt lesních škodlivých činitelů v roce 2020 a jejich očekávaný stav v roce 2021. Zpravodaj ochrany lesa. Supplementum 2021. Strnady, Výzkumný ústav lesního hospodářství a myslivosti, v.v.i.: 35–45. (in Czech)
Martín A., Etxebeste I., Pérez G., Álvarez G., Sánchez E., Pajares J. (2013): Modified pheromone traps help reduce bycatch of bark-beetle natural enemies. Agricultural and Forest Entomology, 15: 86–97. https://doi.org/10.1111/j.1461-9563.2012.00594.x
Mendel Z. (1988): Attraction of Orthotomicus erosus and Pityogenes calcaratus to a synthetic aggregation pheromone of Ips typographus. Phytoparasitica, 16: 109–117. https://doi.org/10.1007/BF02980465
Mulock P., Christiansen E. (1986): The threshold of successful attack by Ips typographus on Picea abies: A field experiment. Forest Ecology and Management, 14: 125–132. https://doi.org/10.1016/0378-1127(86)90097-6
MZe (Ministerstvo zemědělství ČR) (2021): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2020. Praha, Ministerstvo zemědělství: 46. (in Czech)
Panzavolta T., Bracalini M., Bonuomo L., Croci F., Tiberi R. (2014): Field response of non‐target beetles to Ips sexdentatus aggregation pheromone and pine volatiles. Journal of Applied Entomology, 138: 589–599. https://doi.org/10.1111/jen.12121
Pfeffer A. (1955): Fauna ČSR: Kůrovci – Scolytoidea. Praha, Československá akademie věd: 324. (in Czech)
Pfeffer A. (1995): Zentral- und westpaläarktische Borken- und Kernkäfer (Coleoptera: Scolytidae, Platypodidae). Basel, Pro Entomologia: 310. (in German)
Plewa R., Mokrzycki T. (2017): Occurrence, biology, and economic importance of the sharp-dentated bark beetle Ips acuminatus (Gyllenhal, 1827) (Coleoptera, Curculionidae, Scolytinae) in Poland. Sylwan, 161: 619–629. (in Polish)
Ruotsalainen S., Persson T. (2013): Scots pine – Pinus sylvestris. In: Mullin T.J., Lee S.J. (eds): Best Practice for Tree Breeding in Europe, Uppsala, Skogforsk: 49–63.
SciTech (2004): PHEAGR-IAC® - Material Safety Data Sheet. Praha, SciTech s.r.o.: 4 (in Czech)
Skrzecz I., Perlińska A. (2018): Current problems and tasks of forest protection in Poland. Folia Forestalia Polonica, 60: 161–172. https://doi.org/10.2478/ffp-2018-0016
Sukovata L., Jaworski T., Plewa R. (2021): Effectiveness of different lures for attracting Ips acuminatus (Coleoptera: Curculionidae: Scolytinae). Agricultural and Forest Entomology, 23: 154–162. https://doi.org/10.1111/afe.12414
Symonds M.R.E., Gitau-Clarke C.W. (2016): The evolution of aggregation pheromone diversity in bark beetles. In: Tittiger C., Blomquist G.J. (eds): Advances in Insect Physiology: Bark Beetles. Amsterdam, Elsevier: 195–234.
Toffin E., Gabriel E., Louis M., Deneubourg J.-L., Grégoire J.-C. (2018): Colonization of weakened trees by mass-attacking bark beetles: No penalty for pioneers, scattered initial distributions and final regular patterns. Royal Society Open Science, 5: 170454. https://doi.org/10.1098/rsos.170454
Vité J.P., Bakke A., Renwick J.A.A. (1972): Pheromones in Ips (Coleoptera: Scolytidae): Occurrence and production. The Canadian Entomologist, 104: 1967–1975. https://doi.org/10.4039/Ent1041967-12
Weber T. (1987): Can bark beetles be controlled efficiently by application of pheromone traps? Allgemeine Forstzeitschrift, 42: 87–89.
Wermelinger B. (2004): Ecology and management of the spruce bark beetle Ips typographus – A review of recent research. Forest Ecology and Management, 202: 67–82. https://doi.org/10.1016/j.foreco.2004.07.018
Weslien J. (1992a): Monitoring Ips typographus (L.) populations and forecasting damage. Journal of Applied Entomology, 114: 338–340. https://doi.org/10.1111/j.1439-0418.1992.tb01136.x
Weslien J. (1992b): Effects of mass trapping on Ips typographus (L.) populations. Journal of Applied Entomology, 114: 228–232. https://doi.org/10.1111/j.1439-0418.1992.tb01120.x
Wichmann L., Ravn H.P. (2001): The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecology and Management, 148: 31–39. https://doi.org/10.1016/S0378-1127(00)00477-1
Zahradník P. (2014): Metodická příručka integrované ochrany rostlin pro lesní porosty. Kostelec nad Černými lesy, Lesnická práce: 376. (in Czech)
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti