Evaluation of the potential amount of dendromass left in beech stands of the Little Carpathians after intentional felling and its economic assessment

https://doi.org/10.17221/142/2020-JFSCitation:

Daniš M., Neruda J. (2021): Evaluation of the potential amount of dendromass left in beech stands of the Little Carpathians after intentional felling and its economic assessment. J. For. Sci., 67: 247–257.

download PDF

The paper deals with the determination of the amount of logging residues including merchantable timber volume (brush) left in the beech stands for further use. Logging residues were recorded in all types of intentional felling starting with intentional improvement felling up to 50 years and ending with intentional regeneration felling. The potential amount of biomass left was divided into the share of brush and the share of small wood. The parameter was monitored for 3 years and all measured values were then statistically evaluated and related to 1 m3 of intentional felling in beech stands. A partial goal of this publication is characterization of economic impacts of the proposal for processing the recorded volume of logging residues left in the beech stands on the forest branch in Smolenice. The economic impacts are characterized in two proposed and mutually compared scenarios. The first scenario considers framework contractors for logging works with their own machines, i.e. by assignments, as a mediation of service invoiced for the assumed amount (m3) forwarded to the roadside landing, with the ownership of the forwarded dendromass belonging to Lesy SR (Forests of the Slovak Republic). Then, the dendromass is sold from the roadside landing to customers who are going to transport and process it at their own expense. The second scenario considers sales of assumed amounts of left dendromass including brush to customers who will provide for its transport and processing on the identified roadside landing within a set deadline under obligation to return the site to its original condition if there is possible damage. In this case, Lesy SR would be only a control body supervising labour quality and set-up technological procedures.

References:
Badal T. (2012): Regionální využívání lesní biomasy pro výrobu tepla se zaměřením na lesní hospodářství. Biom.cz. Available at: http://biom.cz/cz/odborne-clanky/regionalni-vyuzivani-lesni-biomasy-pro-vyrobu-tepla-se-zamerenim-na-lesni-hospodarstvi (Accessed Apr 23, 2020). (in Czech)
 
Braekke F.H. (1986): Distribution on yield of biomass from young Pinus sylvestris and Picea abies stands on drained and fertilized peatland. Scandinavian Journal of Forest Research, 1: 49–66. https://doi.org/10.1080/02827588609382400
 
Dvořák J. (2005): Analysis of forest stand damages caused by the usage of harvester technologies in mountain areas. Electronic Journal of Polish Agricultural Universities. Series: Forestry, 8. Available at: http://www.ejpau.media.pl/volume8/issue2/art-07.html
 
Dvořák J., Behjou F.K. (2011): Performance standards of medium- and high-power forwarders. In: Kanzian C. (ed.): Proceedings of the 44th International Symposium on Forestry Mechanization: Pushing the Boundaries with Research and Innovation in Forest Engineering, Graz, Oct 9–13, 2011: 1–9.
 
Fischer R. (2014): Potenciál a nasazení vyvážecích traktorů v odvozu dřevní hmoty (potěžebních zbytků) pro energetické účely. [Ms.C. Thesis.] Brno, Mendel University in Brno. (in Czech)
 
Han S.-K., Murphy G. (2011): Trucking productivity and costing model for transportation of recovered wood waste in Oregon. Forest Products Journal, 61: 552–560. https://doi.org/10.13073/0015-7473-61.7.552
 
Johansson J., Liss J.-E., Gullberg T., Bjorheden R. (2006): Transport and handling of forest energy bundles – advantages and problems. Biomass and Bioenergy, 30: 334–341. https://doi.org/10.1016/j.biombioe.2005.07.012
 
Karlsson K., Tamminen P. (2013): Long-term effects of stump harvesting on soil properties and tree growth in Scots pine and Norway spruce stands. Scandinavian Journal of Forest Research, 28: 550–558. https://doi.org/10.1080/02827581.2013.805808
 
Klvač R., Delvin G. (2011): Forest Biomass Processing Glossary: English-Czech and Czech-English Glossary. 1st Ed. Praha, Lesnická práce: 92.
 
Klvač R., Kleibl M. (2012): Doporučená pravidla pro hodnocení provozu technologií zpracování lesní biomasy. Kostelec nad Černými lesy, Lesnická práce: 101. (in Czech)
 
Klvač R. (2012): nergetické využívání lesní biomasy. [CD-ROM]. In Využití biomasy pro energetické a jiné účely. Praha, Biom: 1–24. (in Czech)
 
Korsmo H. (1995): Weight equations for determining biomass fractions of young hardwoods from natural regenerated stands. Scandinavian Journal of Forest Research, 10: 333–346. https://doi.org/10.1080/02827589509382900
 
Kotas M. (2011): Energetický audit technologie výroby lesní štěpky. Zprávy lesnického výzkumu. 56: 329–336. (in Czech)
 
Kotas M., Vlkanova D. (2011): Využití technologií zpracování klestu ve vazbě na antropogenně narušené podmínky prostředí v oblasti Podkrkonoší. In: Kacálek D., Jurásek A., Novák J., Slodičák M. (eds): Proceedings of Central European Silviculture – 12th International Conference, Opočno, June 28–29, 2011: 253–262. (in Czech)
 
Neruda J., Simanov V., Klvač R., Skoupý A., Kadlec J., Zemánek T., Nevrkla P. (2013): Technika a technologie v lesnictví. Brno, Mendelova univerzita v Brně: 300. (in Czech)
 
Poljanec A., Kadunc A. (2013): Quality and timber value of European beech (Fagus sylvatica L.) trees in the Karavanke region. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 34: 151–165.
 
Rahman A., Khanam T., Pelkonen P. (2017): People's knowledge, perceptions, and attitudes towards stump harvesting for bioenergy production in Finland. Renewable and Sustainable Energy Reviews, 70: 107–116. https://doi.org/10.1016/j.rser.2016.11.228
 
Ranius T., Hämäläinen A., Egnell G., Olsson B., Eklof K., Stendahl J., Rudolphi J., Sténs A., Felton A. (2018): The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. Journal of Environmental Management, 209: 409–425. https://doi.org/10.1016/j.jenvman.2017.12.048
 
Snäll T., Johansson V., Jönsson M., Ortiz C., Hammar T., Caruso A., Svensson M., Stendahl J. (2017): Transient trade-off between climate benefit and biodiversity loss of harvesting stumps for bioenergy. Global Change Biology Bioenergy, 9: 1751–1763. https://doi.org/10.1111/gcbb.12467
 
Stupak I., Asikainen A., Jonsel M., Karltun E., Lunnan A., Mizaraite D., Pasanen K., Paern H., Raulund-Rasamussen K., Roeser D., Schroeder M., Varnagiryte I., Vilkriste L. (2007): Sustainable utilization of forest biomass for energy – Possibilities and problems: Policy, legislation, certification and recommendations and guidelines in the Nordic, Baltic, and other European countries. Biomass and Bioenergy, 31: 666–684. https://doi.org/10.1016/j.biombioe.2007.06.012
 
Suchomel J., Gejdoš M. (2009): Ťažbovo-dopravné technológie: časť Sortimentácia dreva a tovaroznalectvo v lesníctve. Zvolen, Technická univerzita vo Zvolene: 292. (in Slovak)
 
Šafařík D. (2012): Současná situace trhu s lesní energetickou štěpkou a prognóza vývoje v kontextu návrhu nové Státní en­ergetické koncepce České republiky. [CD-ROM]. In: Využití biomasy pro energetické a jiné účely. Praha, Biom: 1–10. (in Czech)
 
Štorek V., Štícha V., Skoupý A., Kondělka P., Mikulenčák J. (2017): Stanování množství zbytkové dendromasy na konkrétní pracoviště. Praha, Lesnická práce: 52. (in Czech)
 
Teobaldelli M., Somogyi Z., Migliavacca M., Usoltsev V.A. (2009): Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 257: 1004–1013. https://doi.org/10.1016/j.foreco.2008.11.002
 
Ter-Mikaelian M.T., Korzukhin M.D. (1997): Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97: 1–24. https://doi.org/10.1016/S0378-1127(97)00019-4
 
Wantulok M. (2011): Zkušenosti s výrobou lesní energetické štepky a možnosti rozvoje trhu s ní. Biom.cz. Available at: http://biom.cz/cz/odborne-clanky/zkusenosti-s-vyrobou-lesni-energeticke-stepky-a-moznosti-rozvoje-trhu-s-ni (Accessed July 24, 2020). (in Czech)
 
WebLes 2 (2020): Informačný systém Lesy SR. Available at: https://intranet.lesy.sk/Foresta/WebLES/ (Accessed Apr  23, 2020). (in Slovak)
 
Yavorov N., Petrin S., Valchev I., Nenkova S. (2015): Potential of fast growing poplar, willow and paulownia for bioenergy production. Bulgarian Chemical Communications, 47: 5–9.
 
Yoshida M., Berg S., Sakurai R., Sakai H. (2016): Evaluation of chipping productivity with five different mobile chippers at different forest sites by a stochastic model. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 37: 309–318.
 
Yoshida M., Sakai H. (2017): Selection of chipper engine size based on business scale and optimised cost of chipping and transportation. Journal of Forest Research, 22: 265–273. https://doi.org/10.1080/13416979.2017.1368168
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti