Spontaneous development of early successional vegetation improves Norway spruce forest soil after clear-cutting and renewal failure: a case study at a sandy-soil site

https://doi.org/10.17221/150/2019-JFSCitation:Špulák O., Kacálek D. (2020): Spontaneous development of early successional vegetation improves Norway spruce forest soil after clear-cutting and renewal failure: a case study at a sandy-soil site. J. For. Sci., 66: 36-47.
download PDF

Clear-cutting is the most common silvicultural system. Sometimes, if the new crop is not established successfully, clearcut is left unreforested. This study focused on a site where early successional species such as silver birch (Bi) and rowan (Ro) were accompanied with Norway spruce (Sp) in 13-year-old stand from natural regeneration at 550 m of altitude at an acidic site with eastern aspect and 25% slope. We found five types of stand composition: treeless gaps, Ro-Bi, Ro-Bi-Sp, Bi-Sp and monospecific Sp. Besides these juvenile ones, adjacent 100-year-old spruce (Sp old) stand representing pre-harvesting conditions was studied. In addition to the performance of trees, organic layer (Hum), topsoil (Ah) and upper subsoil (B) horizons were sampled to study an expected shift of chemical properties after clear-cutting and secondary succession at the site of interest. Birch dominated the natural regeneration; rowan and spruce were present mostly in understorey. Old spruce was more acidic and nutrient-poorer compared to the juvenile treatments. The treeless treatment showed also slightly higher pH and comparable nutrients compared to the young mixtures. Young spruce was higher in nitrogen compared to Ro-Bi-Sp mixture.

Ambroży S., Zachara T., Kapsa M., Chomicz-Zegar E., Vytseha R. (2017): Ways to use silver birch Betula pendula Roth regeneration in sites considered for stand conversion due to decline of Norway spruce Picea abies (L.) H. Karst. in the Silesian Beskid Mountains. Leśne Prace Badawcze / Forest Research Papers, 78: 226–237. https://doi.org/10.1515/frp-2017-0025
Balazy R., Zasada M., Ciesielski M., Waraksa P., Zawila-Niedzwiecki T. (2019): Forest dieback processes in the Central European Mountains in the context of terrain topography and selected stand attributes. Forest Ecology and Management, 435: 106-119. https://doi.org/10.1016/j.foreco.2018.12.052
Bose A.K., Schelhaas M.J., Mazerolle M.J., Bongers F. (2014): Temperate forest development during secondary succession: effects of soil, dominant species and management. European Journal of Forest Research, 133: 511–523. https://doi.org/10.1007/s10342-014-0781-y
Cai H., Di X., Chang S.X., Jin G. (2016): Stand density and species richness affect carbon storage and net primary productivity in early and late successional temperate forests differently. Ecological Research, 31: 525–533. https://doi.org/10.1007/s11284-016-1361-z
Carnol M., Bazgir M. (2013): Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management, 309: 66–75. https://doi.org/10.1016/j.foreco.2013.04.008
Ciavatta C., Vittori Antisari L., Sequi P. (1989): Determination of organic carbon in soils and fertilizers. Communications in Soil Science and Plant Analysis, 20: 759–773. https://doi.org/10.1080/00103628909368115
Comeau P.G., Wang J.R., Letchford T. (2003): Influences of paper birch competition on growth of understory white spruce and subalpine fir following spacing. Canadian Journal of Forest Research, 33: 1962–1973. https://doi.org/10.1139/x03-117
Dostalova A. (2009): Tree seedlings: how do they establish in spontaneously developed forests? A study from a mountainous area in the Czech Republic. Biodiversity and Conservation, 18: 1671–1684. https://doi.org/10.1007/s10531-008-9549-3
Dymov A.A., Startsev V.V. (2016): Changes in the temperature regime of podzolic soils in the course of natural forest restoration after clearcutting. Eurasian Soil Science, 49: 551–559. https://doi.org/10.1134/S1064229316050021
Dymov A.A. (2017): The impact of clearcutting in boreal forests of Russia on soils: A review. Eurasian Soil Science, 50: 780–790. https://doi.org/10.1134/S106422931707002X
Fischer A., Fischer H.S. (2012): Individual-based analysis of tree establishment and forest stand development within 25 years after wind throw. European Journal of Forest Research, 131: 493–501. https://doi.org/10.1007/s10342-011-0524-2
Hudjetz S., Lennartz G., Krämer K., Roß-Nickoll M., Gergs A., Preuss T.G. (2014): Modeling wood encroachment in abandoned grasslands in the Eifel National Park – model description and testing. PLoS ONE, 9: e113827. DOI: https://doi.org/10.1371/journal.pone.0113827 https://doi.org/10.1371/journal.pone.0113827
Hynynen J., Niemistö P., Viherä-Aarnio A., Brunner A., Hein S., Velling P. (2010): Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 83: 103–119. https://doi.org/10.1093/forestry/cpp035
Chazdon R.L., Brancalion P.H.S., Laestadius L., Bennett-Curry A., Buckingham K., Kumar Ch., Moll-Rocek J., Guimarães Vieira I.C., Wilson S.J. (2016): When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 45: 538–550. https://doi.org/10.1007/s13280-016-0772-y
Ivanov I.V., Shadrikov I.G. (2010): Coevolution of soils and vegetation in the southern taiga (with the Prioksko-Terrasnyi Reserve as an example). Eurasian Soil Science, 43: 1230–1237. https://doi.org/10.1134/S1064229310110050
Kappen H. (1929): Die Bodenazidität. Berlin, Springer: 363.
Kayama M., Sasa K., Koike T. (2002): Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22: 707–716. https://doi.org/10.1093/treephys/22.10.707
Kayama M., Kitaoka S., Wang W., Choi D., Koike T. (2007): Needle longevity, photosynthetic rate and nitrogen concentration of eight spruce taxa planted in northern Japan. Tree Physiology, 27: 1585–1593. https://doi.org/10.1093/treephys/27.11.1585
Kirk P.L. (1950): Kjeldahl method for total nitrogen. Analytical Chemistry, 22: 354–358. https://doi.org/10.1021/ac60038a038
Klinka K., Fons J., Krestov P. (1997): Towards a taxonomic classification of humus forms; third approximation. Scientia Silvica, Extension Series, 9: 1–4.
Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P. (2018): Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. The ISME Journal, 12: 692–703. https://doi.org/10.1038/s41396-017-0027-3
Košulič M. (2006): Geneticko-ekologické aspekty při zakládání lesa na nelesních půdách. In: Neuhöferová P. (ed.): Zalesňování zemědělských půd, výzva pro lesnický sektor. Kostelec nad Černými lesy, 17. 1. 2006: 65–72.
Kranabetter J.M., Coates K.D. (2004): Ten-year postharvest effects of silviculture systems on soil-resource availability and conifer nutrition in a northern temperate forest. Canadian Journal of Forest Research, 34: 800–809. https://doi.org/10.1139/x03-244
Laiho R., Prescott C.E. (1999): The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research, 29: 1592–1603. https://doi.org/10.1139/x99-132
Lindo Z., Visser S. (2003): Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Canadian Journal of Forest Research, 33: 1610–1620. https://doi.org/10.1139/x03-080
Martiník A., Adamec Z., Houška, J. (2017): Production and soil restoration effect of pioneer tree species in a region of allochthonous Norway spruce dieback. Journal of Forest Science, 63, 1: 34–44.
Mehlich A. (1984): Mehlich 3 soil extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409–1416.  https://doi.org/10.1080/00103628409367568
Němeček J. et al. (2001): Taxonomický klasifikační systém půd České republiky. Praha, ČZU Praha a VÚMOP Praha: 78.
Nygaard P.H., Strand L.T., Stuanes A.O. (2017): Gap formation and dynamics after long-term steady state in an old-growth Picea abies stand in Norway: Above- and belowground interactions. Ecology and Evolution, 8: 462–476.  https://doi.org/10.1002/ece3.3643
Podrázský V., Ulbrichová I., Moser W.K. (2005): Využití břízy a smrku pichlavého při obnově porostů na plochách s nenarušenou vrstvou nadložního humusu. Zprávy lesnického výzkumu, 50: 76–78.
Prokopová M., Cudlín O., Včeláková R., Lengyel S., Salvati L., Cudlín P. (2018): Latent drivers of landscape transformation in Eastern Europe: Past, present and future. Sustainability, 10: doi:10.3390/su10082918. https://doi.org/10.3390/su10082918
R Core Team (2015): R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at http://www.R-project.org/ (accessed Dec 19, 2019).
Rhoades C.C., Miller S.P., Skinner D.I. (2005): Forest vegetation and soil patterns across glade-forest ecotones in the Knobs Region of Northeastern Kentucky, USA. The American Midland Naturalist, 154, 1: 1–10. https://doi.org/10.1674/0003-0031(2005)154[0001:FVASPA]2.0.CO;2
Rothe A., Binkley D. (2001): Nutritional interactions in mixed species forests: a synthesis. Canadian Journal of Forest Research, 31: 1855–1870. https://doi.org/10.1139/x01-120
Shanin V., Komarov A., Mäkipää R. (2014): Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. European Journal of Forest Research, 133: 273–286. https://doi.org/10.1007/s10342-013-0759-1
Sáňka M., Materna J. (2004): Indikátory kvality zemědělských a lesních půd ČR. Praha, Ministerstvo životního prostředí ČR: 84.
Shresta B.M., Chen H.Y.H. (2010): Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests. Plant Soil, 336: 267–277. https://doi.org/10.1007/s11104-010-0475-2
Schua K., Wende S., Wagner S., Feger K.-H. (2015): Soil chemical and microbial properties in a mixed stand of spruce and birch in the Ore Mountains (Germany) – A case study. Forests, 6: 1949–1965. https://doi.org/10.3390/f6061949
Siebers N., Kruse J. (2019): Short-term impacts of forest clear-cut on soil structure and consequences for organic matter composition and nutrient speciation: A case study. PLoS ONE, 14: e0220476.  https://doi.org/10.1371/journal.pone.0220476
Siegel S., Castellan N.J., Jr. (1988): The Kruskal-Wallis One-way Analysis of Variance by Ranks. In: Siegel S., Castellan N.J., Jr.: Nonparametric statistics for the behavioural sciences. 2nd ed. New York, MacGraw Hill Int.: 213–214.
Stutz K.P., Schack-Kirchner H., Kändler G., Landes L., Linz M., Warlo H., Lang F. (2017): Available nutrients can accumulate in permanent skid trails. Forests, 8, 358: doi:10.3390/f8100358. https://doi.org/10.3390/f8100358
Svoboda P. (1957): Lesní dřeviny a jejich porosty. Část III. 1. vydání. Praha, Státní zemědělské nakladatelství: 165–193.
Ulbrichová I., Podrázský V., Slodičák M. (2005): Soil forming role of birch in the Ore Mts. Journal of Forest Science, 51, Special Issue: 54-58.
Ulrich B. (1981): Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144: 289–305. https://doi.org/10.1002/jpln.19811440308
Úradníček L., Maděra P., Tichá S., Koblížek J. (2009): Dřeviny České republiky. 2. přeprac. vyd. Kostelec nad Černými lesy, Lesnická práce: 366. ISBN 978-80-87154-62-5.
Zanella A., Jabiol B., Ponge J.F., Sartori G., Waal de R., Delft Van B., Graefe U., Cools N., Katzensteiner K., Hager H., Englisch M. (2011): A European morpho-functional classification of humus forms. Geoderma, 164: 138–145. https://doi.org/10.1016/j.geoderma.2011.05.016
Żywiec M., Ledwoń M. (2008): Spatial and temporal patterns of rowan (Sorbus aucuparia L.) regeneration in West Carpathian subalpine spruce forest. Plant Ecology, 194: 283–291. https://doi.org/10.1007/s11258-007-9291-z
download PDF

© 2020 Czech Academy of Agricultural Sciences