Growth response of seven multipurpose tree species to climatic factors: A case study from northwestern Himalayas, India
Bauwe A., Jurasinski G., Scharnweber T., Schroeder C., Lennartz B. (2015): Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. iForest – Biogeosciences and Forestry, 9: 1–11.
https://doi.org/10.3832/ifor1421-008
Bhattacharyya A., Yadav R.R., Borgaonkar H.P., Pant G.B. (1992): Growth-ring analysis of Indian tropical trees: Dendroclimatic potential. Current Science, 62: 736–741.
Bhutiyani M.R. (2015): Climate change in the Northwestern Himalayas. In: Joshi R., Kumar K., Palni L. (eds): Dynamics of Climate Change and Water Resources of Northwestern Himalaya. Cham, Springer: 85–96.
Bhutiyani M.R., Kale V.S., Pawar N.J. (2007): Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85: 159–177.
https://doi.org/10.1007/s10584-006-9196-1
Brandes A.F.D.N., Albuquerque R.P., de Moraes L.F.D., Barros C.F. (2016): Annual tree rings in Piptadenia gonoacantha (Mart.) J.F.Macbr. in a restoration experiment in the Atlantic Forest: Potential for dendroecological research. Acta Botanica Brasilica, 30: 383–388.
https://doi.org/10.1590/0102-33062016abb0101
Brett D.W. (1978): Dendroclimatology of elm in London. Tree-Ring Bulletin, 38: 35–44.
Brienen R.J.W., Zuidema P.A. (2005): Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia, 146: 1–12.
https://doi.org/10.1007/s00442-005-0160-y
Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek S. (2019): Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS One, 14: e0221082.
Dié A., De Ridder M., Cherubini P., Kouamé F.N., Verheyden A., Kitin P., Toirambe B.B., Van Den Bulcke J., Van Acker J., Beeckman H. (2015): Tree rings show a different climatic response in a managed and a non-managed plantation of teak (Tectona grandis) in West Africa. IAWA Journal, 36: 409–427.
https://doi.org/10.1163/22941932-20150111
Drew D.M., Allen K., Downes G.M., Evans R., Battaglia M., Baker P. (2013): Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree Physiology, 33: 37–47.
https://doi.org/10.1093/treephys/tps111
Fritts H.C. (1976): Tree Rings and Climate. London, Academic Press: 583.
Gallo J., Vacek Z., Vacek S. (2021): Quarter of a century of forest fertilization and liming research at the Department of Silviculture in Prague, Czech Republic. Central European Forestry Journal, 67: 123–134.
https://doi.org/10.2478/forj-2021-0009
Gautam D., Basnet S., Karki P., Thapa B., Ojha P., Poudel U., Gautam S., Adhikari D., Sharma A., Miya M.S., Khatri A., Thapa A. (2020): A review on dendrochronological potentiality of the major tree species of Nepal. Journal of Forest Research, 9: 227.
Grogan J., Schulze M. (2012): The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia. Brazil. Biotropica, 44: 331–340.
https://doi.org/10.1111/j.1744-7429.2011.00825.x
Hájek V., Vacek S., Vacek Z., Cukor J., Šimůnek V., Šimková M., Prokůpková A., Králíček I., Bulušek D. (2021): Effect of climate change on the growth of endangered scree forests in Krkonoše National Park (Czech Republic). Forests, 12: 1127.
https://doi.org/10.3390/f12081127
IMD (2010): Climate of Himachal Pradesh. Climatological summaries of States series – No. 15. New Delhi, Indian Meteorological Department: 98.
Jaouadi W., Mechergui K., Riahi M.A., Khouja M. L. (2018): Effect of thinning on Pinus pinea L. development and physico-chemical soil characteristics in northwestern Tunisia: Modeling of radial growth under thinning intensity. Dendrobiology, 80: 70–80.
https://doi.org/10.12657/denbio.080.007
Jiao L., Jiang Y., Zhang W., Wang M., Wang S., Liu X. (2019): Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. Forest Ecology and Management, 433: 667–677.
https://doi.org/10.1016/j.foreco.2018.11.046
Jin-gen Q. (1987): A preliminary study on the effect of the main climatic and edaphic factors on the growth of Paulownia elongata. Chinese Journal of Plant Ecology, 11: 11–20.
Jump A.S., Hunt J.M., Penuelas J. (2006): Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12: 2163–2174.
https://doi.org/10.1111/j.1365-2486.2006.01250.x
Mikulenka P., Prokůpková A., Vacek Z., Vacek S., Bulušek D., Simon J., Šimůnek V., Hájek V. (2020): Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Central European Forestry Journal, 66: 23–36.
https://doi.org/10.2478/forj-2019-0026
Nair P.K.R. (1993): An Introduction to Agroforestry. Dordrecht, Springer Netherlands: 499.
Natalini F., Correia A.C., Vázquez-Piqué J., Alejano R. (2015): Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Annals of Forest Science, 72: 1023–1033.
https://doi.org/10.1007/s13595-015-0521-6
Panda S., Bhardwaj D.R., Sharma P., Handa A.K., Kumar D. (2021): Impact of climatic patterns on phenophase and growth of multi-purpose trees of north-western mid-Himalayan ecosystem. Trees, Forests and People, 6: 100143.
https://doi.org/10.1016/j.tfp.2021.100143
Pérez-de-Lis G., García-González I., Rozas V., Arévalo J.R. (2011): Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Annals of Forest Science, 68: 1093–1104.
https://doi.org/10.1007/s13595-011-0125-8
Ponton S., Bornot Y., Bréda N. (2019): Soil fertilization transiently increases radial growth in sessile oaks but does not change their resilience to severe soil water deficit. Forest Ecology and Management, 432: 923–931.
https://doi.org/10.1016/j.foreco.2018.10.027
Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65: 21–33.
https://doi.org/10.2478/forj-2019-0004
Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456–464.
https://doi.org/10.17221/75/2015-JFS
Rigozo N.R., Nordemann D.J.R., Echer E., Zanandrea A., Gonzalez W.D. (2002): Solar variability effects studied by tree-ring data wavelet analysis. Advances in Space Research, 29: 1985–1988.
https://doi.org/10.1016/S0273-1177(02)00245-4
Savva Y., Oleksyn J., Reich P.B., Tjoelker M.G., Vaganov E.A., Modrzynski J. (2006): Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees, 20: 735–746.
https://doi.org/10.1007/s00468-006-0088-9
Sharma P., Singh M.K., Tiwari P. (2017a): Agroforestry: A land degradation control and mitigation approach. Bulletin of Environment, Pharmacology and Life Sciences, 6: 312–317.
Sharma P., Singh M.K., Tiwari P., Verma K. (2017b): Agroforestry systems: Opportunities and challenges in India. Journal of Pharmacognosy and Phytochemistry, 1: 953–957.
Schweingruber F.G. (1996): Tree Rings and Environment Dendroecology. Bern, Paul Haupt Publishers: 609.
Sidor C.G., Vlad R., Popa I., Semeniuc A., Apostol E., Badea O. (2021): Impact of industrial pollution on radial growth of conifers in a former mining area in the eastern Carpathians (northern Romania). Forests, 12: 640.
https://doi.org/10.3390/f12050640
Šimůnek V., Sharma R.P., Vacek Z., Vacek S., Hůnová I. (2020): Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: A forest science from different perspective. European Journal of Forest Research, 139: 999–1013.
https://doi.org/10.1007/s10342-020-01302-7
Tewari D.N. (1995): Orienting multipurpose tree species research in India. In: Hegde N.G., Daniel J.N. (eds): Proceedings of National Workshop on Multipurpose Tree Species for Agroforestry in India, Pune, Apr 6–9, 1994: 5–14.
Tognetti R., Cherubini P., Innes J.L. (2000): Comparative stem‐growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. The New Phytologist, 146: 59–74.
https://doi.org/10.1046/j.1469-8137.2000.00620.x
Trouet V., Coppin P., Beeckman H. (2006): Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica, 38: 375–382.
https://doi.org/10.1111/j.1744-7429.2006.00155.x
Urban S.T., Lieffers V.J., MacDonald S.E. (1994): Release in radial growth in the trunk and structural roots of white spruce as measured by dendrochronology. Canadian Journal of Forest Research, 24: 1550–1556.
https://doi.org/10.1139/x94-202
Vacek S., Vacek Z., Ulbrichová I., Remeš J., Podrázský V., Vach M., Bulušek D., Král J., Putalová T. (2019): The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scandinavian Journal of Forest Research, 34: 267–281.
https://doi.org/10.1080/02827581.2019.1589566
Vacek Z., Cukor J., Linda R., Vacek S., Šimůnek V., Brichta J., Gallo J., Prokůpková A. (2020): Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. Forest Ecology and Management, 474: 118360.
https://doi.org/10.1016/j.foreco.2020.118360
Verma K., Sharma P., Kumar D., Vishwakarma S.P., Meena N.K. (2021): Strategies sustainable management of agroforestry in climate change mitigation and adaptation. International Journal of Current Microbiology and Applied Sciences, 10: 2439–2449.
https://doi.org/10.20546/ijcmas.2021.1001.282
Vlam M., Baker P.J., Bunyavejchewin S., Zuidema P.A. (2014): Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 174: 1449–1461.
https://doi.org/10.1007/s00442-013-2846-x
Voelker S.L., Muzika R.M., Guyette R.P., Stambaugh M.C. (2006): Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76: 549–564.
https://doi.org/10.1890/0012-9615(2006)076[0549:HCGEDW]2.0.CO;2
Yadav R.P., Bisht J.K. (2015): Celtis australis Linn: A multipurpose tree species in North West Himalaya. International Journal of Life-sciences Scientific Research, 1: 66–70.
Yamaguchi D.K. (1991): A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21: 414–416.
https://doi.org/10.1139/x91-053
Zang C., Hartl‐Meier C., Dittmar C., Rothe A., Menzel A. (2014): Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20: 3767–3779.
https://doi.org/10.1111/gcb.12637
Zhu Z.H., Chao C.J., Lu X.Y., Xiong Y.G. (1986): Paulownia in China: Cultivation and utilization. Beijing, Chinese Academy of Forestry: 65.
Zywiec M., Muter E., Zielonka T., Delibes M., Calvo G., Fedriani J.M. (2017): Long-term effect of temperature and precipitation on radial growth in a threatened thermo-Mediterranean tree population. Trees, 31: 491–501.
https://doi.org/10.1007/s00468-016-1472-8