Growth response of seven multipurpose tree species to climatic factors: A case study from northwestern Himalayas, India

https://doi.org/10.17221/159/2021-JFSCitation:

Panda S., Bhardwaj D.R., Thakur C.L., Sharma P., Kumar D. (2022): Growth response of seven multipurpose tree species to climatic factors: A case study from northwestern Himalayas, India. J. For. Sci., 68: 83–95.

supplementary materialdownload PDF

Identification of the species for dendrochronological studies is of great relevance to understand various aspects of climate change. However, in the northwestern Himalayan region, dendroclimatological investigations are confined to conifer species, with broadleaved species being disregarded. Thus, the present study was conducted to assess the growth response of seven multipurpose tree species (MPTs), namely Bauhinia variegata, Celtis australis, Grewia optiva, Paulownia fortunei, Toona ciliata, Ulmus villosa and Melia composita to local climate variables, viz. temperature as well as rainfall (seasonal, monthly, average) and CO2 level by evaluating the climatic signal in tree ring chronologies at Solan district, India (altitude 1 250 m) in the mid-hills of the northwestern Himalayas. The results indicated that only the maximum, rainy season temperature and CO2 level varied significantly (P < 0.05) between 1991 and 2017. Only G. optiva exhibited a significant (P < 0.05) tendency toward increased growth. C. australis has a remarkable negative correlation with temperature variables, viz. average, maximum, spring season, March temperature, whereas T. ciliata exhibits a positive correlation with temperature variables, such as rainy season, average and April temperature. Similarly, winter, total and December rainfall have a profound effect on P. fortunei, while March rainfall adversely affected the growth of B. variegata. On the other hand, G. optiva demonstrated sensitivity to both temperature (February and May) and rainfall variables (winter, February and May). U. villosa recorded a positive correlation with rainfall (autumn and October rainfall) but a negative correlation with temperature variables (maximum and April temperature). Elevated CO2 levels affected only two species (G. optiva, M. composita) out of the seven selected species. Our findings will contribute to a better understanding of the climate growth relationships of investigated tree species, as a result, to more accurate projections of the effects of climate change on these MPTs and directing future studies.

References:
Bauwe A., Jurasinski G., Scharnweber T., Schroeder C., Lennartz B. (2015): Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. iForest – Biogeosciences and Forestry, 9: 1–11. https://doi.org/10.3832/ifor1421-008
 
Bhattacharyya A., Yadav R.R., Borgaonkar H.P., Pant G.B. (1992): Growth-ring analysis of Indian tropical trees: Dendroclimatic potential. Current Science, 62: 736–741.
 
Bhutiyani M.R. (2015): Climate change in the Northwestern Himalayas. In: Joshi R., Kumar K., Palni L. (eds): Dynamics of Climate Change and Water Resources of Northwestern Himalaya. Cham, Springer: 85–96.
 
Bhutiyani M.R., Kale V.S., Pawar N.J. (2007): Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85: 159–177. https://doi.org/10.1007/s10584-006-9196-1
 
Brandes A.F.D.N., Albuquerque R.P., de Moraes L.F.D., Barros C.F. (2016): Annual tree rings in Piptadenia gonoacantha (Mart.) J.F.Macbr. in a restoration experiment in the Atlantic Forest: Potential for dendroecological research. Acta Botanica Brasilica, 30: 383–388.  https://doi.org/10.1590/0102-33062016abb0101
 
Brett D.W. (1978): Dendroclimatology of elm in London. Tree-Ring Bulletin, 38: 35–44.
 
Brienen R.J.W., Zuidema P.A. (2005): Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia, 146: 1–12.  https://doi.org/10.1007/s00442-005-0160-y
 
Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek S. (2019): Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS One, 14: e0221082.
 
Dié A., De Ridder M., Cherubini P., Kouamé F.N., Verheyden A., Kitin P., Toirambe B.B., Van Den Bulcke J., Van Acker J., Beeckman H. (2015): Tree rings show a different climatic response in a managed and a non-managed plantation of teak (Tectona grandis) in West Africa. IAWA Journal, 36: 409–427. https://doi.org/10.1163/22941932-20150111
 
Drew D.M., Allen K., Downes G.M., Evans R., Battaglia M., Baker P. (2013): Wood properties in a long-lived conifer reveal strong climate signals where ring-width series do not. Tree Physiology, 33: 37–47. https://doi.org/10.1093/treephys/tps111
 
Fritts H.C. (1976): Tree Rings and Climate. London, Academic Press: 583.
 
Gallo J., Vacek Z., Vacek S. (2021): Quarter of a century of forest fertilization and liming research at the Department of Silviculture in Prague, Czech Republic. Central European Forestry Journal, 67: 123–134.  https://doi.org/10.2478/forj-2021-0009
 
Gautam D., Basnet S., Karki P., Thapa B., Ojha P., Poudel U., Gautam S., Adhikari D., Sharma A., Miya M.S., Khatri A., Thapa A. (2020): A review on dendrochronological potentiality of the major tree species of Nepal. Journal of Forest Research, 9: 227.
 
Grogan J., Schulze M. (2012): The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia. Brazil. Biotropica, 44: 331–340.  https://doi.org/10.1111/j.1744-7429.2011.00825.x
 
Hájek V., Vacek S., Vacek Z., Cukor J., Šimůnek V., Šimková M., Prokůpková A., Králíček I., Bulušek D. (2021): Effect of climate change on the growth of endangered scree forests in Krkonoše National Park (Czech Republic). Forests, 12: 1127. https://doi.org/10.3390/f12081127
 
IMD (2010): Climate of Himachal Pradesh. Climatological summaries of States series – No. 15. New Delhi, Indian Meteorological Department: 98.
 
Jaouadi W., Mechergui K., Riahi M.A., Khouja M. L. (2018): Effect of thinning on Pinus pinea L. development and physico-chemical soil characteristics in northwestern Tunisia: Modeling of radial growth under thinning intensity. Dendrobiology, 80: 70–80.  https://doi.org/10.12657/denbio.080.007
 
Jiao L., Jiang Y., Zhang W., Wang M., Wang S., Liu X. (2019): Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. Forest Ecology and Management, 433: 667–677. https://doi.org/10.1016/j.foreco.2018.11.046
 
Jin-gen Q. (1987): A preliminary study on the effect of the main climatic and edaphic factors on the growth of Paulownia elongata. Chinese Journal of Plant Ecology, 11: 11–20.
 
Jump A.S., Hunt J.M., Penuelas J. (2006): Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12: 2163–2174.  https://doi.org/10.1111/j.1365-2486.2006.01250.x
 
Mikulenka P., Prokůpková A., Vacek Z., Vacek S., Bulušek D., Simon J., Šimůnek V., Hájek V. (2020): Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Central European Forestry Journal, 66: 23–36.  https://doi.org/10.2478/forj-2019-0026
 
Nair P.K.R. (1993): An Introduction to Agroforestry. Dordrecht, Springer Netherlands: 499.
 
Natalini F., Correia A.C., Vázquez-Piqué J., Alejano R. (2015): Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Annals of Forest Science, 72: 1023–1033.  https://doi.org/10.1007/s13595-015-0521-6
 
Panda S., Bhardwaj D.R., Sharma P., Handa A.K., Kumar D. (2021): Impact of climatic patterns on phenophase and growth of multi-purpose trees of north-western mid-Himalayan ecosystem. Trees, Forests and People, 6: 100143.  https://doi.org/10.1016/j.tfp.2021.100143
 
Pérez-de-Lis G., García-González I., Rozas V., Arévalo J.R. (2011): Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Annals of Forest Science, 68: 1093–1104.  https://doi.org/10.1007/s13595-011-0125-8
 
Ponton S., Bornot Y., Bréda N. (2019): Soil fertilization transiently increases radial growth in sessile oaks but does not change their resilience to severe soil water deficit. Forest Ecology and Management, 432: 923–931.  https://doi.org/10.1016/j.foreco.2018.10.027
 
Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65: 21–33.  https://doi.org/10.2478/forj-2019-0004
 
Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456–464.  https://doi.org/10.17221/75/2015-JFS
 
Rigozo N.R., Nordemann D.J.R., Echer E., Zanandrea A., Gonzalez W.D. (2002): Solar variability effects studied by tree-ring data wavelet analysis. Advances in Space Research, 29: 1985–1988.  https://doi.org/10.1016/S0273-1177(02)00245-4
 
Savva Y., Oleksyn J., Reich P.B., Tjoelker M.G., Vaganov E.A., Modrzynski J. (2006): Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees, 20: 735–746. https://doi.org/10.1007/s00468-006-0088-9
 
Sharma P., Singh M.K., Tiwari P. (2017a): Agroforestry: A land degradation control and mitigation approach. Bulletin of Environment, Pharmacology and Life Sciences, 6: 312–317.
 
Sharma P., Singh M.K., Tiwari P., Verma K. (2017b): Agroforestry systems: Opportunities and challenges in India. Journal of Pharmacognosy and Phytochemistry, 1: 953–957.
 
Schweingruber F.G. (1996): Tree Rings and Environment Dendroecology. Bern, Paul Haupt Publishers: 609.
 
Sidor C.G., Vlad R., Popa I., Semeniuc A., Apostol E., Badea O. (2021): Impact of industrial pollution on radial growth of conifers in a former mining area in the eastern Carpathians (northern Romania). Forests, 12: 640.  https://doi.org/10.3390/f12050640
 
Šimůnek V., Sharma R.P., Vacek Z., Vacek S., Hůnová I. (2020): Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: A forest science from different perspective. European Journal of Forest Research, 139: 999–1013.  https://doi.org/10.1007/s10342-020-01302-7
 
Tewari D.N. (1995): Orienting multipurpose tree species research in India. In: Hegde N.G., Daniel J.N. (eds): Proceedings of National Workshop on Multipurpose Tree Species for Agroforestry in India, Pune, Apr 6–9, 1994: 5–14.
 
Tognetti R., Cherubini P., Innes J.L. (2000): Comparative stem‐growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. The New Phytologist, 146: 59–74.  https://doi.org/10.1046/j.1469-8137.2000.00620.x
 
Trouet V., Coppin P., Beeckman H. (2006): Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica, 38: 375–382.  https://doi.org/10.1111/j.1744-7429.2006.00155.x
 
Urban S.T., Lieffers V.J., MacDonald S.E. (1994): Release in radial growth in the trunk and structural roots of white spruce as measured by dendrochronology. Canadian Journal of Forest Research, 24: 1550–1556.  https://doi.org/10.1139/x94-202
 
Vacek S., Vacek Z., Ulbrichová I., Remeš J., Podrázský V., Vach M., Bulušek D., Král J., Putalová T. (2019): The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scandinavian Journal of Forest Research, 34: 267–281. https://doi.org/10.1080/02827581.2019.1589566
 
Vacek Z., Cukor J., Linda R., Vacek S., Šimůnek V., Brichta J., Gallo J., Prokůpková A. (2020): Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. Forest Ecology and Management, 474: 118360. https://doi.org/10.1016/j.foreco.2020.118360
 
Verma K., Sharma P., Kumar D., Vishwakarma S.P., Meena N.K. (2021): Strategies sustainable management of agroforestry in climate change mitigation and adaptation. International Journal of Current Microbiology and Applied Sciences, 10: 2439–2449. https://doi.org/10.20546/ijcmas.2021.1001.282
 
Vlam M., Baker P.J., Bunyavejchewin S., Zuidema P.A. (2014): Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 174: 1449–1461. https://doi.org/10.1007/s00442-013-2846-x
 
Voelker S.L., Muzika R.M., Guyette R.P., Stambaugh M.C. (2006): Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76: 549–564.  https://doi.org/10.1890/0012-9615(2006)076[0549:HCGEDW]2.0.CO;2
 
Yadav R.P., Bisht J.K. (2015): Celtis australis Linn: A multipurpose tree species in North West Himalaya. International Journal of Life-sciences Scientific Research, 1: 66–70.
 
Yamaguchi D.K. (1991): A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21: 414–416. https://doi.org/10.1139/x91-053
 
Zang C., Hartl‐Meier C., Dittmar C., Rothe A., Menzel A. (2014): Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20: 3767–3779.  https://doi.org/10.1111/gcb.12637
 
Zhu Z.H., Chao C.J., Lu X.Y., Xiong Y.G. (1986): Paulownia in China: Cultivation and utilization. Beijing, Chinese Academy of Forestry: 65.
 
Zywiec M., Muter E., Zielonka T., Delibes M., Calvo G., Fedriani J.M. (2017): Long-term effect of temperature and precipitation on radial growth in a threatened thermo-Mediterranean tree population. Trees, 31: 491–501. https://doi.org/10.1007/s00468-016-1472-8
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti