Development of loop mediated isothermal amplification for rapid species detection of Armillaria ostoyae using assimilating probe

Tonka T., Stehlíková D., Walterová L., Čurn V. (2022): Development of loop mediated isothermal amplification for rapid species detection of Armillaria ostoyae using assimilating probe. J. For. Sci., 68: 163–169.

download PDF

We introduced here the first loop mediated isothermal amplification (LAMP) assay for the identification of honey fungus, Armillaria ostoyae, a basidiomycote playing an important role in spruce declines in the Palaearctic region. In total, 101 isolates, representing three Armillaria species, were used to develop a new LAMP assay to determine species specific identification. We have here described LAMP primers enhanced with fluorescent dye that are able to amplify A. ostoyae DNA and detect fungi in a fast single step reaction. The detection limit of LAMP was 1 pg of genomic DNA per reaction. We optimized a new LAMP assay for the rapid detection of A. ostoyae using the translation elongation factor 1-α (tef1) marker and fluorescence labelled oligonucleotide assimilating probe. The LAMP assay does not require any specialized equipment, hence it can be used in the field for the rapid detection of A. ostoyae even using the portable and mobile device. The specificity of the assay was confirmed by the use of A. ostoyae strains and Armillaria cepistipes and Armillaria gallica strains, respectively. In conclusion, the assay could be a rapid, specific, sensitive and low-cost tool for identification of A. ostoyae as well as the first step for expansion of this method in practical applications.

Aglietti C., Luchi N., Pepori A.L., Bartolini P., Pecori F., Raio A., Capretti P., Santini A. (2019): Real-time loop-mediated isothermal amplification: An early-warning tool for quarantine plant pathogen detection. AMB Express, 9: 50.
Anderson J.B., Stasovski E. (1992): Molecular phylogeny of northern hemisphere species of Armillaria. Mycologia, 84: 505–516.
Antonín V., Tomšovský M., Sedlák P., Májek T., Jankovský L. (2009): Morphological and molecular characterization of the Armillaria cepistipes – A. gallica complex in the Czech Republic and Slovakia. Mycological Progress, 8: 259–271.
Aslam S., Tahir A., Aslam M.F., Alam M.W., Shedayi A.A., Sadia S. (2017): Recent advances in molecular techniques for the identification of phytopathogenic fungi – A mini review. Journal of Plant Interactions, 12: 493–504.
Baumgartner K., Bhat R., Fujiyoshi P. (2010): A rapid infection assay for Armillaria and real-time PCR quantitation of the fungal biomass in planta. Fungal Biology, 114: 107–119.
Baumgartner K., Coetzee M.P., Hoffmeister D. (2011): Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12: 515–534.
Chillali M., Wipf D., Guillaumin J.J., Mohammed C., Botton B. (1998): Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. The New Phytologist, 138: 553–561.
Cienciala E., Tumajer J., Zatloukal V., Beranová J., Holá Š., Hůnová I., Russ R. (2017): Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. European Journal of Forest Research, 136: 307–317.
Coetzee M., Wingfield B.D., Wingfield M.J. (2018): Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens, 7: 83.
Ghosh R., Nagavardhini A., Sengupta A., Sharma M. (2015): Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris – Wilt pathogen of chickpea. BMC Research Notes, 8: 40.
Guo T., Wang H.C., Xue W.Q., Zhao J., Yang Z.L. (2016): Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE, 11: e0154794.
Hariharan G., Prasannath K. (2021): Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10: 600234.
He Z., Su Y., Li S., Long P., Zhang P., Chen Z. (2019a): Development and evaluation of isothermal amplification methods for rapid detection of lethal Amanita species. Frontiers in Microbiology, 10: 1523.
He M.Q., Zhao R.L., Hyde K.D., Begerow D., Kemler M. et al. (2019b): Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99: 105–367.
Holuša J., Lubojacký J., Čurn V., Tonka T., Lukášová K., Horák J. (2018): Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecology and Management, 427: 434–445.
Jenkins D.M., Kubota R., Dong J., Li Y., Higashiguchi D. (2011): Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosensors and Bioelectronics, 30: 255–260.
Kauserud H., Schumacher T. (2001): Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycological Research, 105: 676–683.
Keča N., Bodles W.J.A., Woodward S., Karadžić D., Bojović S. (2006): Molecular-based identification and phylogeny of Armillaria species from Serbia and Montenegro. Forest Pathology, 36: 41–57.
King K.M., Hawkins N.J., Atkins S., Dyer P.S., West J.S., Fraaije B.A. (2019): First application of loop-mediated isothermal amplification (LAMP) assays for rapid identification of mating type in the heterothallic fungus Aspergillus fumigatus. Mycoses, 62: 812–817.
Kim M.S., Klopfenstein N.B., Hanna J.W., McDonald G.I. (2006): Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers. Forest Pathology, 36: 145–164.
Klopfenstein N.B., Stewart J.E., Ota Y., Hanna J.W., Richardson B.A., et al. (2017): Insights into the phylogeny of northern hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences. Mycologia, 109: 75–91.
Koch R.A., Wilson A.W., Séné O., Henkel T.W., Aime M.C. (2017): Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evolutionary Biology, 17: 33
Kouguchi Y., Fujiwara T., Teramoto M., Kuramoto M. (2010): Homogenous, real-time duplex loop-mediated isothermal amplification using a single fluorophore-labeled primer and an intercalator dye: Its application to the simultaneous detection of Shiga toxin genes 1 and 2 in Shiga toxigenic Escherichia coli isolates. Molecular and Cellular Probes, 24: 190–195.
Kubota R., Alvarez A.M., Su W.W., Jenkins D.M. (2011): FRET-based assimilating probe for sequence-specific real-time monitoring of loop-mediated isothermal amplification (LAMP). Biological Engineering Transactions, 4: 81–100.
Lochman J., Sery O., Mikeš V. (2004): The rapid identification of European Armillaria species from soil samples by nested PCR. FEMS Microbiological Letters, 237: 105–110.
Maphosa L., Wingfield B.D., Coetzee M.P.A., Mwenje E., Wingfield M.J. (2006): Phylogenetic relationships among Armillaria species inferred from partial elongation factor 1-alpha DNA sequence data. Australasian Plant Pathology, 35: 513–520.
Matheny P.B., Wang Z., Binder M., Curtis J.M., Lim Y.W., Nilsson R.H., Hughes K.W., Hofstetter V., Ammirati J.F., Schoch C.L., Langer E., Langer G., McLaughlin D.J., Wilson A.W., Frøslev T., Ge Z.W., Kerrigan R.W., Slot J.C., Yang Z.L., Baroni T.J., Fischer M., Hosaka K., Matsuura K., Seidl M.T., Vauras J., Hibbett D.S. (2007): Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetic and Evolution, 43: 430–451.
Mulholland V., MacAskill G.A., Laue B.E., Steele H., Kenyon D., Green, S. (2012): Development and verification of a diagnostic assay based on EF‐1 α for the identification of Armillaria species in Northern Europe. Forest Pathology, 42: 229–238.
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. (2000): Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28: e63.
Ortega S.F., Tomlinson J., Hodgetts J., Spadaro D., Gullino M.L., Boonham N. (2018): Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in rice seed. Plant Disease, 102: 1549–1558.
Panek J., Frac M. (2019): Loop-mediated isothermal amplification (LAMP) approach for detection of heat-resistant Talaromyces flavus species. Scientific Reports, 9: 5846.
Park K.H., Oh S.Y., Park M.S., Kim M.S., Klopfenstein N.B., Kim N.K., Park J.Y., Kim J.J., Han S.K., Lee J.K., Lim Y.W. (2018): Re-evaluation of Armillaria and Desarmillaria in South Korea based on ITS/tef1 sequences and morphological characteristics. Forest Pathology, 48: e12447.
Porebski S., Bailey L.G., Baum B.R. (1997): Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Report, 15: 8–15.
Sillo F., Giordano L., Gonthier P. (2018): Fast and specific detection of the invasive forest pathogen Heterobasidion irregulare through a loop-mediated isothermal amplification (LAMP) assay. Forest Pathology, 48: e12396.
Sicoli G., Fatehi J., Stenlid J. (2003): Development of species-specific PCR primers on rDNA for the identification of European Armillaria species. Forest Pathology, 33: 287–297.
Stehlíková D., Tonka T., Křížová L., Čurn V. (2019): Detekce Armillaria cepistipes metodou loop-mediated isothermal amplification. Úroda (vědecká příloha časopisu), 12/2019,: 237–241. (in Czech)
Stehlíková D., Luchi N., Aglietti C., Pepori A.L., Diez J.J., Santini A. (2020): Real-time loop-mediated isothermal amplification assay for rapid detection of Fusarium circinatum. Biotechniques, 69: 11–17.
Tanner N.A., Zhang Y., Evans Jr. T.C. (2012): Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques, 53: 81–89.
Wang X.R., Wu L.F., Wang Y., Ma Y.Y., Chen F.H., Ou H.L. (2015): Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Applied Biochemistry and Biotechnology, 175: 882–891.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti