Development of loop mediated isothermal amplification for rapid species detection of Armillaria ostoyae using assimilating probe

https://doi.org/10.17221/161/2021-JFSCitation:

Tonka T., Stehlíková D., Walterová L., Čurn V. (2022): Development of loop mediated isothermal amplification for rapid species detection of Armillaria ostoyae using assimilating probe. J. For. Sci., 68: 163–169.

download PDF

We introduced here the first loop mediated isothermal amplification (LAMP) assay for the identification of honey fungus, Armillaria ostoyae, a basidiomycote playing an important role in spruce declines in the Palaearctic region. In total, 101 isolates, representing three Armillaria species, were used to develop a new LAMP assay to determine species specific identification. We have here described LAMP primers enhanced with fluorescent dye that are able to amplify A. ostoyae DNA and detect fungi in a fast single step reaction. The detection limit of LAMP was 1 pg of genomic DNA per reaction. We optimized a new LAMP assay for the rapid detection of A. ostoyae using the translation elongation factor 1-α (tef1) marker and fluorescence labelled oligonucleotide assimilating probe. The LAMP assay does not require any specialized equipment, hence it can be used in the field for the rapid detection of A. ostoyae even using the portable and mobile device. The specificity of the assay was confirmed by the use of A. ostoyae strains and Armillaria cepistipes and Armillaria gallica strains, respectively. In conclusion, the assay could be a rapid, specific, sensitive and low-cost tool for identification of A. ostoyae as well as the first step for expansion of this method in practical applications.

References:
Aglietti C., Luchi N., Pepori A.L., Bartolini P., Pecori F., Raio A., Capretti P., Santini A. (2019): Real-time loop-mediated isothermal amplification: An early-warning tool for quarantine plant pathogen detection. AMB Express, 9: 50. https://doi.org/10.1186/s13568-019-0774-9
 
Anderson J.B., Stasovski E. (1992): Molecular phylogeny of northern hemisphere species of Armillaria. Mycologia, 84: 505–516. https://doi.org/10.1080/00275514.1992.12026170
 
Antonín V., Tomšovský M., Sedlák P., Májek T., Jankovský L. (2009): Morphological and molecular characterization of the Armillaria cepistipes – A. gallica complex in the Czech Republic and Slovakia. Mycological Progress, 8: 259–271. https://doi.org/10.1007/s11557-009-0597-1
 
Aslam S., Tahir A., Aslam M.F., Alam M.W., Shedayi A.A., Sadia S. (2017): Recent advances in molecular techniques for the identification of phytopathogenic fungi – A mini review. Journal of Plant Interactions, 12: 493–504. https://doi.org/10.1080/17429145.2017.1397205
 
Baumgartner K., Bhat R., Fujiyoshi P. (2010): A rapid infection assay for Armillaria and real-time PCR quantitation of the fungal biomass in planta. Fungal Biology, 114: 107–119. https://doi.org/10.1016/j.mycres.2009.11.003
 
Baumgartner K., Coetzee M.P., Hoffmeister D. (2011): Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12: 515–534. https://doi.org/10.1111/j.1364-3703.2010.00693.x
 
Chillali M., Wipf D., Guillaumin J.J., Mohammed C., Botton B. (1998): Delineation of the European Armillaria species based on the sequences of the internal transcribed spacer (ITS) of ribosomal DNA. The New Phytologist, 138: 553–561. https://doi.org/10.1046/j.1469-8137.1998.00124.x
 
Cienciala E., Tumajer J., Zatloukal V., Beranová J., Holá Š., Hůnová I., Russ R. (2017): Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. European Journal of Forest Research, 136: 307–317. https://doi.org/10.1007/s10342-017-1032-9
 
Coetzee M., Wingfield B.D., Wingfield M.J. (2018): Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens, 7: 83. https://doi.org/10.3390/pathogens7040083
 
Ghosh R., Nagavardhini A., Sengupta A., Sharma M. (2015): Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris – Wilt pathogen of chickpea. BMC Research Notes, 8: 40. https://doi.org/10.1186/s13104-015-0997-z
 
Guo T., Wang H.C., Xue W.Q., Zhao J., Yang Z.L. (2016): Phylogenetic analyses of Armillaria reveal at least 15 phylogenetic lineages in China, seven of which are associated with cultivated Gastrodia elata. PLoS ONE, 11: e0154794. https://doi.org/10.1371/journal.pone.0154794
 
Hariharan G., Prasannath K. (2021): Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10: 600234. https://doi.org/10.3389/fcimb.2020.600234
 
He Z., Su Y., Li S., Long P., Zhang P., Chen Z. (2019a): Development and evaluation of isothermal amplification methods for rapid detection of lethal Amanita species. Frontiers in Microbiology, 10: 1523. https://doi.org/10.3389/fmicb.2019.01523
 
He M.Q., Zhao R.L., Hyde K.D., Begerow D., Kemler M. et al. (2019b): Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99: 105–367.
 
Holuša J., Lubojacký J., Čurn V., Tonka T., Lukášová K., Horák J. (2018): Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. Forest Ecology and Management, 427: 434–445. https://doi.org/10.1016/j.foreco.2018.01.031
 
Jenkins D.M., Kubota R., Dong J., Li Y., Higashiguchi D. (2011): Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosensors and Bioelectronics, 30: 255–260. https://doi.org/10.1016/j.bios.2011.09.020
 
Kauserud H., Schumacher T. (2001): Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in Phellinus nigrolimitatus (Basidiomycota). Mycological Research, 105: 676–683. https://doi.org/10.1017/S0953756201004191
 
Keča N., Bodles W.J.A., Woodward S., Karadžić D., Bojović S. (2006): Molecular-based identification and phylogeny of Armillaria species from Serbia and Montenegro. Forest Pathology, 36: 41–57. https://doi.org/10.1111/j.1439-0329.2006.00434.x
 
King K.M., Hawkins N.J., Atkins S., Dyer P.S., West J.S., Fraaije B.A. (2019): First application of loop-mediated isothermal amplification (LAMP) assays for rapid identification of mating type in the heterothallic fungus Aspergillus fumigatus. Mycoses, 62: 812–817. https://doi.org/10.1111/myc.12959
 
Kim M.S., Klopfenstein N.B., Hanna J.W., McDonald G.I. (2006): Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers. Forest Pathology, 36: 145–164. https://doi.org/10.1111/j.1439-0329.2006.00441.x
 
Klopfenstein N.B., Stewart J.E., Ota Y., Hanna J.W., Richardson B.A., et al. (2017): Insights into the phylogeny of northern hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences. Mycologia, 109: 75–91. https://doi.org/10.1080/00275514.2017.1286572
 
Koch R.A., Wilson A.W., Séné O., Henkel T.W., Aime M.C. (2017): Resolved phylogeny and biogeography of the root pathogen Armillaria and its gasteroid relative, Guyanagaster. BMC Evolutionary Biology, 17: 33 https://doi.org/10.1186/s12862-017-0877-3
 
Kouguchi Y., Fujiwara T., Teramoto M., Kuramoto M. (2010): Homogenous, real-time duplex loop-mediated isothermal amplification using a single fluorophore-labeled primer and an intercalator dye: Its application to the simultaneous detection of Shiga toxin genes 1 and 2 in Shiga toxigenic Escherichia coli isolates. Molecular and Cellular Probes, 24: 190–195. https://doi.org/10.1016/j.mcp.2010.03.001
 
Kubota R., Alvarez A.M., Su W.W., Jenkins D.M. (2011): FRET-based assimilating probe for sequence-specific real-time monitoring of loop-mediated isothermal amplification (LAMP). Biological Engineering Transactions, 4: 81–100. https://doi.org/10.13031/2013.38509
 
Lochman J., Sery O., Mikeš V. (2004): The rapid identification of European Armillaria species from soil samples by nested PCR. FEMS Microbiological Letters, 237: 105–110. https://doi.org/10.1111/j.1574-6968.2004.tb09684.x
 
Maphosa L., Wingfield B.D., Coetzee M.P.A., Mwenje E., Wingfield M.J. (2006): Phylogenetic relationships among Armillaria species inferred from partial elongation factor 1-alpha DNA sequence data. Australasian Plant Pathology, 35: 513–520. https://doi.org/10.1071/AP06056
 
Matheny P.B., Wang Z., Binder M., Curtis J.M., Lim Y.W., Nilsson R.H., Hughes K.W., Hofstetter V., Ammirati J.F., Schoch C.L., Langer E., Langer G., McLaughlin D.J., Wilson A.W., Frøslev T., Ge Z.W., Kerrigan R.W., Slot J.C., Yang Z.L., Baroni T.J., Fischer M., Hosaka K., Matsuura K., Seidl M.T., Vauras J., Hibbett D.S. (2007): Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetic and Evolution, 43: 430–451. https://doi.org/10.1016/j.ympev.2006.08.024
 
Mulholland V., MacAskill G.A., Laue B.E., Steele H., Kenyon D., Green, S. (2012): Development and verification of a diagnostic assay based on EF‐1 α for the identification of Armillaria species in Northern Europe. Forest Pathology, 42: 229–238. https://doi.org/10.1111/j.1439-0329.2011.00747.x
 
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. (2000): Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28: e63. https://doi.org/10.1093/nar/28.12.e63
 
Ortega S.F., Tomlinson J., Hodgetts J., Spadaro D., Gullino M.L., Boonham N. (2018): Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in rice seed. Plant Disease, 102: 1549–1558. https://doi.org/10.1094/PDIS-08-17-1307-RE
 
Panek J., Frac M. (2019): Loop-mediated isothermal amplification (LAMP) approach for detection of heat-resistant Talaromyces flavus species. Scientific Reports, 9: 5846. https://doi.org/10.1038/s41598-019-42275-x
 
Park K.H., Oh S.Y., Park M.S., Kim M.S., Klopfenstein N.B., Kim N.K., Park J.Y., Kim J.J., Han S.K., Lee J.K., Lim Y.W. (2018): Re-evaluation of Armillaria and Desarmillaria in South Korea based on ITS/tef1 sequences and morphological characteristics. Forest Pathology, 48: e12447.
 
Porebski S., Bailey L.G., Baum B.R. (1997): Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Report, 15: 8–15. https://doi.org/10.1007/BF02772108
 
Sillo F., Giordano L., Gonthier P. (2018): Fast and specific detection of the invasive forest pathogen Heterobasidion irregulare through a loop-mediated isothermal amplification (LAMP) assay. Forest Pathology, 48: e12396. https://doi.org/10.1111/efp.12396
 
Sicoli G., Fatehi J., Stenlid J. (2003): Development of species-specific PCR primers on rDNA for the identification of European Armillaria species. Forest Pathology, 33: 287–297. https://doi.org/10.1046/j.1439-0329.2003.00330.x
 
Stehlíková D., Tonka T., Křížová L., Čurn V. (2019): Detekce Armillaria cepistipes metodou loop-mediated isothermal amplification. Úroda (vědecká příloha časopisu), 12/2019,: 237–241. (in Czech)
 
Stehlíková D., Luchi N., Aglietti C., Pepori A.L., Diez J.J., Santini A. (2020): Real-time loop-mediated isothermal amplification assay for rapid detection of Fusarium circinatum. Biotechniques, 69: 11–17. https://doi.org/10.2144/btn-2019-0168
 
Tanner N.A., Zhang Y., Evans Jr. T.C. (2012): Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques, 53: 81–89. https://doi.org/10.2144/0000113902
 
Wang X.R., Wu L.F., Wang Y., Ma Y.Y., Chen F.H., Ou H.L. (2015): Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Applied Biochemistry and Biotechnology, 175: 882–891. https://doi.org/10.1007/s12010-014-1328-x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti