Alexis M.A., Rasse D.P., Rumpel C., Bardoux G., Péchot N., Schmalzer P., Drake B., Mariotti A. (2007): Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 82: 201–216.
https://doi.org/10.1007/s10533-006-9063-1
Allen E.B., Steers R.J., Dickens S.J. (2011): Impacts of fire and invasive species on desert soil ecology. Rangeland Ecology and Management, 64: 450–462.
https://doi.org/10.2111/REM-D-09-00159.1
Allison L.E. (1965): Organic carbon. In: Black C.A. (ed.): Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Madison, John Wiley & Sons, Ltd.: 1367–1378.
Arunrat N., Sereenonchai S., Wang C. (2021): Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. Journal of Environmental Management, 289: 112458.
https://doi.org/10.1016/j.jenvman.2021.112458
Arunrat N., Sereenonchai S., Hatano R. (2022): Effects of fire on soil organic carbon, soil total nitrogen, and soil properties under rotational shifting cultivation in northern Thailand. Journal of Environmental Management, 302: 113978.
https://doi.org/10.1016/j.jenvman.2021.113978
Ball P.N., MacKenzie M.D., DeLuca T.H., Holben W.E. (2010): Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Qualify, 39: 1243–1253.
https://doi.org/10.2134/jeq2009.0082
Balvanera P., Pfisterer A.B., Buchmann N., He J.S., Nakashizuka T., Raffaelli D., Schmid B. (2006): Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9: 1146–1156.
https://doi.org/10.1111/j.1461-0248.2006.00963.x
Barefoot C.R., Willson K.G., Hart J.L., Schweitzer C.J., Dey D.C. (2019): Effects of thinning and prescribed fire frequency on ground flora in mixed Pinus-hardwood stands. Forest Ecology and Management, 432: 729–740.
https://doi.org/10.1016/j.foreco.2018.09.055
Barreiro A., Díaz-Raviña M. (2021): Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science and Health, 22: 100264.
https://doi.org/10.1016/j.coesh.2021.100264
Bird M.I., Wynn J.G., Saiz G., Wurster C.M., McBeath A. (2015): The pyrogenic carbon cycle. Annual Review of Earth and Planetary Sciences, 43: 273–298.
https://doi.org/10.1146/annurev-earth-060614-105038
Bond W.J., Woodward F.I., Midgley G.F. (2005): The global distribution of ecosystems in a world without fire. New Phytologist, 165: 525–538.
https://doi.org/10.1111/j.1469-8137.2004.01252.x
Bouyoucos G.J. (1962): Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464–465.
https://doi.org/10.2134/agronj1962.00021962005400050028x
Brewer J.S. (2016): Natural canopy damage and the ecological restoration of fire-indicative groundcover vegetation in an oak-pine gorest. Fire Ecology, 12: 105–126.
https://doi.org/10.4996/fireecology.1202105
Certini G. (2005): Effects of fire on properties of forest soils: A review. Oecologia, 143: 1–10.
https://doi.org/10.1007/s00442-004-1788-8
Chamshama S.A.O., Nwonwu F.O.C., Lundgren B., Kowero G.S. (2009): Plantation forestry in Sub-Saharan Africa: Silvicultural, ecological and economic aspects. Discovery and Innovation, 21: 42–49.
https://doi.org/10.4314/dai.v21i3.48210
Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H. (2014): Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45–67.
https://doi.org/10.1890/13-0133.1
Delitti W., Ferran A., Trabaud L., Vallejo V.R. (2005): Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant composition and productivity. Plant Ecology, 177: 57–70.
https://doi.org/10.1007/s11258-005-2140-z
Dobner Jr. M., Campoe O.C. (2019): Meteorological effects on 30-years-grown Pinus taeda under a gradient of crown thinning intensities in southern Brazil. Forest Ecology and Management, 453: 117624.
https://doi.org/10.1016/j.foreco.2019.117624
Dymov A.A., Gabov D.N., Milanovskii E.Y. (2017): 13C-NMR, PAHs, WSOC and water repellence of fire-affected soils (Albic Podzols) in lichen pine forests, Russia. Environmental Earth Sciences, 76: 275.
https://doi.org/10.1007/s12665-017-6600-2
Dymov A.A., Startsev V.V., Milanovsky E.Y., Valdes-Korovkin I.A., Farkhodov Y.R., Yudina A.V., Donnerhack O., Guggenberger G. (2021): Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma, 404: 115278.
https://doi.org/10.1016/j.geoderma.2021.115278
Espinosa J., Madrigal J., De La Cruz A.C., Guijarro M., Jimenez E., Hernando C. (2018): Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (Central-Eastern Spain). Science of the Total Environment, 618: 941–951.
https://doi.org/10.1016/j.scitotenv.2017.08.291
Fachin P.A., Costa Y.T., Thomaz E.L. (2021): Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow. Science of the Total Environment, 764: 142823.
https://doi.org/10.1016/j.scitotenv.2020.142823
Fairman T.A., Nitschke C.R., Bennett L.T. (2022): Carbon stocks and stability are diminished by short-interval wildfires in fire-tolerant eucalypt forests. Forest Ecology and Management, 505: 119919.
https://doi.org/10.1016/j.foreco.2021.119919
FAO (2001): Mean Annual Volume Increment of Selected Industrial Forest Plantation Species by L. Ugalde & O. Pérez. Forest Plantation Thematic Papers, Working Paper 1. Rome, FAO: 28.
FAO (2020): Global Forest Resources Assessment 2020: Main report. Rome, FAO: 186.
Felton A., Lindbladh M., Brunet J., Fritz Ö. (2010): Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management, 260: 939–947.
https://doi.org/10.1016/j.foreco.2010.06.011
Felton A.M., Wam H.K., Stolter C., Mathisen K.M., Wallgren M. (2018): The complexity of interacting nutritional drivers behind food selection, a review of northern cervids. Ecosphere, 9: e02230.
https://doi.org/10.1002/ecs2.2230
Fonseca F., de Figueiredo T., Nogueira C., Queirós A. (2017): Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma, 307: 172–180.
https://doi.org/10.1016/j.geoderma.2017.06.018
Fox T.R., Jokela E.J., Allen H.L. (2007): The development of pine plantation silviculture in the southern United States. Journal of Forestry, 105: 337–347.
Giovannini M., Sun S. (2012): Welcome to your new journal: Endoscopic Ultrasound. Endosopic Ultrasound, 1: 1.
https://doi.org/10.7178/eus.01.001
Guedes B.S., Olsson B.A., Sitoe A.A., Egnell G. (2018): Net primary production in plantations of Pinus taeda and Eucalyptus cloeziana compared with a mountain miombo woodland in Mozambique. Global Ecology and Conservation, 15: e00414.
https://doi.org/10.1016/j.gecco.2018.e00414
Hsieh T.C., Ma K.H., Chao A. (2016): iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7: 1451–1456.
https://doi.org/10.1111/2041-210X.12613
Hubbert K.R., Preisler H.K., Wohlgemuth P.M., Graham R.C., Narog M.G. (2006): Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma, 130: 284–298.
https://doi.org/10.1016/j.geoderma.2005.02.001
Humpenöder F., Popp A., Dietrich J.P., Klein D., Lotze-Campen H., Bonsch M., Bodirsky B.L., Weindl I., Stevanovic M., Müller C. (2014): Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9: 064029.
https://doi.org/10.1088/1748-9326/9/6/064029
Iglay R.B., Leopold B.D., Miller D.A. (2014): Vegetation responses to fire and herbicide in intensively managed, mid-rotation pine. Forest Ecology and Management, 328: 69–78.
https://doi.org/10.1016/j.foreco.2014.05.029
Jin L., Liu Y., Ning J., Liu L., Li X. (2019): Carbon storage of exotic slash pine plantations in subtropical China. Journal of Forest and Environmental Science, 35: 150–158.
Jones M.W., Coppola A.I., Santín C., Dittmar T., Jaffé R., Doerr S.H., Quine T.A. (2020): Fires prime terrestrial organic carbon for riverine export to the global oceans. Nature Communications, 11: 2791.
https://doi.org/10.1038/s41467-020-16576-z
Kara O., Bolat I. (2009): Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9: 1151–1155.
https://doi.org/10.1016/j.ecolind.2009.01.002
Karimi A., Abdollahi S., Ostad-Ali-Askari D.K., Eslamian S., Singh V.P. (2019): Predicting fire hazard areas using vegetation indexes, case study: Forests of Golestan province, Iran. Journal of Geography and Cartography, 4: 1–6.
https://doi.org/10.24294/jgc.v2i1.451
Keeley J.E. (2009): Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal Wildland Fire, 18: 116–126.
https://doi.org/10.1071/WF07049
Knicker H., Müller P., Hilscher A. (2007): How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma, 142: 178–196.
https://doi.org/10.1016/j.geoderma.2007.08.010
Leite F., Bento-Gonçalves A., Vieira A., da Vinha L. (2015): Mega-fires around the world: A literature review. In: Bento Gonçalves A.J., Batista Vieira A.A. (eds): Wildland Fires – A Worldwide Reality. New York, Nova Science Publishers: 15–33.
Leites L.P., Zubizarreta-Gerendiain A., Robinson A.P. (2013): Modeling mensurational relationships of plantation-grown loblolly pine (Pinus taeda L.) in Uruguay. Forest Ecology and Management, 289: 455–462.
https://doi.org/10.1016/j.foreco.2012.10.016
Li D., Niu S., Luo Y. (2012): Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytologist, 195: 172–181.
https://doi.org/10.1111/j.1469-8137.2012.04150.x
Lucas-Borja M.E., Plaza-Álvarez P.A., Gonzalez-Romero J., Sagra J., Alfaro-Sánchez R., Zema D.A., Moya D., de las Heras J. (2019): Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Science of the Total Environment, 674: 615–622.
https://doi.org/10.1016/j.scitotenv.2019.04.114
Martiarena R.A., Frangi J.L., Pinazo M.A., Von Wallis A., Fernández R.A. (2011): Effect of thinning and harvest type on storage and losses of phosphorous in Pinus taeda L. plantations in subtropical Argentina. International Journal of Forestry Research, 2011: 761532.
https://doi.org/10.1155/2011/761532
Mataix-Solera J., Cerdà A., Arcenegui V., Jordán A., Zavala L.M. (2011): Fire effects on soil aggregation: A review. Earth-Science Reviews, 109: 44–60.
https://doi.org/10.1016/j.earscirev.2011.08.002
Matusick G., Hudson S.J., Garrett C.Z., Samuelson L.J., Kent J.D., Addington R.N., Parker J.M. (2020): Frequently burned loblolly–shortleaf pine forest in the southeastern United States lacks the stability of longleaf pine forest. Ecosphere, 11: e03055.
https://doi.org/10.1002/ecs2.3055
Minervini M.G., Morrás H., Taboada M.Á. (2018): Efectos del fuego en la matriz del suelo. Consecuencias sobre las propiedades físicas y mineralógicas. Ecología Austral, 28: 12–27. (in Spanish)
https://doi.org/10.25260/EA.18.28.1.0.127
Muñoz-Rojas M., Lewandrowski W., Erickson T.E., Dixon K.W., Merritt D.J. (2016): Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Science of the Total Environment, 572: 1385–1394.
https://doi.org/10.1016/j.scitotenv.2016.02.086
Nave L.E., Vance E.D., Swanston C.W., Curtis P.S. (2011): Fire effects on temperate forest soil C and N storage. Ecological Applications, 21: 1189–1201.
https://doi.org/10.1890/10-0660.1
Nghalipo E.N., Throop H.L. (2021): Vegetation patch type has a greater influence on soil respiration than does fire history on soil respiration in an arid broadleaf savanna woodland, central Namibia. Journal of Arid Environments, 193: 104577.
https://doi.org/10.1016/j.jaridenv.2021.104577
Nichols L., Shinneman D.J., McIlroy S.K., de Graaff M.A. (2021): Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Applied Soil Ecology, 165: 103967.
https://doi.org/10.1016/j.apsoil.2021.103967
Oksanen J., Blanchet F.G., Kindt R., et al. (2013): Vegan: Community Ecology Package. R Package Version. 2.0-10. Available at: https://cran.r-project.org/web/packages/vegan/index.html
Perdue J.H., Stanturf J.A., Young T.M., Huang X., Dougherty D., Pigott M., Guo Z. (2017): Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA. Forest Policy and Economics, 83: 146–155.
https://doi.org/10.1016/j.forpol.2017.08.006
Peterson D.W., Reich P.B. (2008): Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. Plant Ecology, 194: 5–16.
https://doi.org/10.1007/s11258-007-9270-4
Picchio R., Tavankar F., Latterini F., Jourgholami M., Karamdost Marian B., Venanzi R. (2020): Influence of different thinning treatments on stand resistance to snow and wind in loblolly pine (Pinus taeda L.) coastal plantations of northern Iran. Forests, 11: 1034.
https://doi.org/10.3390/f11101034
Poorbabaei H., Poor-Rostam A. (2009): The effect of shelterwood silvicultural method on the plant species diversity in a beech (Fagus orientalis Lipsky) forest in the north of Iran. Journal of Forest Science, 55: 387–394.
https://doi.org/10.17221/40/2008-JFS
Prendergast-Miller M.T., de Menezes A.B., Macdonald L.M., Toscas P., Bissett A., Baker G., Farrell M., Richardson A.E., Wark T., Thrall P.H. (2017): Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biology and Biochemistry, 109: 1–13.
https://doi.org/10.1016/j.soilbio.2017.01.027
Prestemon J.P., Abt R.C. (2002): Timber products supply and demand. Available at: https://www.srs.fs.usda.gov/sustain/report/pdf/chapter_13e.pdf
Rafiei Jahed R., Fakhari M., Eslamdoust J., Fashat M., Kooch Y., Hosseini S.M. (2017): Restoration of degraded forest using native and exotic species: Investigation on soil productivity and stand quality (Case study: Chamestan-Mazandaran province). Iranian Journal of Forest and Poplar Research, 25: 483–494.
Reynolds H.L., Packer A., Bever J.D., Clay K. (2003): Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84: 2281–2291.
https://doi.org/10.1890/02-0298
Richter C., Rejmánek M., Miller J.E.D., Welch K.R., Weeks J., Safford H. (2019): The species diversity × fire severity relationship is hump‐shaped in semiarid yellow pine and mixed conifer forests. Ecosphere, 10: e02882.
https://doi.org/10.1002/ecs2.2882
Santín C., Doerr S.H., Kane E.S., Masiello C.A., Ohlson M., de la Rosa J.M., Preston C.M., Dittmar T. (2016a): Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22: 76–91.
https://doi.org/10.1111/gcb.12985
Santín C., Doerr S.H., Merino A., Bryant R., Loader N.J. (2016b): Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma, 264: 71–80.
https://doi.org/10.1016/j.geoderma.2015.09.021
Schenker N., Gentleman J.F. (2001): On judging the significance of differences by examining the overlap between confidence intervals. The American Statistician, 55: 182–186.
https://doi.org/10.1198/000313001317097960
Soleimany M., Eslamdoust J., Akbarinia M., Kooch Y. (2021): Soil aggregate stability index and particulate organic matter in response to differently afforested lands in the temperate regions of Iran. Journal of Forest Science, 67: 376–384.
https://doi.org/10.17221/20/2021-JFS
Stavi I. (2019): Wildfires in grasslands and shrublands: A review of impacts on vegetation, soil, hydrology, and geomorphology. Water, 11: 1042.
https://doi.org/10.3390/w11051042
Stephan K., Kavanagh K.L., Koyama A. (2015): Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components. PLoS One, 10: e0119560.
https://doi.org/10.1371/journal.pone.0119560
Ürker O., Tavsanoglu C., Gürkan B. (2018): Post-fire recovery of the plant community in Pinus brutia forests: Active vs. indirect restoration techniques after salvage logging. iForest – Biogeosciences and Forestry, 11: 635–642.
https://doi.org/10.3832/ifor2645-011
Volkova L., Weiss-Aparicio A.G., Weston C.J. (2019): Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia. Science of the Total Environment, 670: 328–336.
https://doi.org/10.1016/j.scitotenv.2019.03.226
Wallinger R.S. (2002): Intensive forest management: Growing wood and preserving biodiversity in the US South and Brazil. Forest Operations Review, 4: 5–10.
Westlake S.M., Mason D., Lázaro-Lobo A., Burr P., McCollum J.R., Chance D., Lashle M.A. (2020): The magnet effect of fire on herbivores affects plant community structure in a forested system. Forest Ecology and Management, 458: 117794.
https://doi.org/10.1016/j.foreco.2019.117794
Xiang X., Shi Y., Yang J., Kong J., Lin X., Zhang H., Zeng J., Chu H. (2015): Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Reports, 4: 3829.
https://doi.org/10.1038/srep03829