Vegetation dynamics and soil properties following low-intensity wildfire in loblolly pine (Pinus taeda L.) planted forest in Northern Iran

https://doi.org/10.17221/16/2022-JFSCitation:

Nezhadgholam-Zardroodi M., Pourbabaei H., Ghodskhah-Daryaei M., Salehi A., Enayati-Charvadeh S., Eslamdoust J. (2022): Vegetation dynamics and soil properties following low-intensity wildfire in loblolly pine (Pinus taeda L.) planted forest in Northern Iran. J. For. Sci., 68: 145–155.

download PDF

Vegetation dynamics, soil properties, and the correlation between them following a wildfire are crucial to understanding the recovery of forest (natural or planted forest) ecosystems. We compared species composition and soil properties in two burned (Br) and unburned (UBr) sites of loblolly pine (Pinus taeda L.) stand in Northern Iran. We detected 39 plant species including 22 (56.4%) species that were common in both sites, 13 (33.3%) species specifically in the Br site, and 4 (10.3%) species specifically in the UBr site. Although species abundance was significantly higher in the UBr site, species richness was significantly higher in the Br site. Species composition was significantly different (F = 16.25, P-value = 0.001) between Br and UBr sites. Rarefaction-extrapolation revealed consistently and significantly higher species diversity in Br site compared to UBr site for all three Hill numbers. Only sand (t = 2.23, P-value = 0.030), pH (t = 2.44, P-value = 0.018) and electrical coductivity (t = 2.98, P-value = 0.004) were significantly higher (P-value ≤ 0.05) in the Br site due to the demobilization of base cations in burnt vegetation. In the Br site, the wildfire did not cause any marked changes in C and N stocks.

References:
Alexis M.A., Rasse D.P., Rumpel C., Bardoux G., Péchot N., Schmalzer P., Drake B., Mariotti A. (2007): Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 82: 201–216. https://doi.org/10.1007/s10533-006-9063-1
 
Allen E.B., Steers R.J., Dickens S.J. (2011): Impacts of fire and invasive species on desert soil ecology. Rangeland Ecology and Management, 64: 450–462. https://doi.org/10.2111/REM-D-09-00159.1
 
Allison L.E. (1965): Organic carbon. In: Black C.A. (ed.): Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Madison, John Wiley & Sons, Ltd.: 1367–1378.
 
Arunrat N., Sereenonchai S., Wang C. (2021): Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. Journal of Environmental Management, 289: 112458. https://doi.org/10.1016/j.jenvman.2021.112458
 
Arunrat N., Sereenonchai S., Hatano R. (2022): Effects of fire on soil organic carbon, soil total nitrogen, and soil properties under rotational shifting cultivation in northern Thailand. Journal of Environmental Management, 302: 113978. https://doi.org/10.1016/j.jenvman.2021.113978
 
Ball P.N., MacKenzie M.D., DeLuca T.H., Holben W.E. (2010): Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Qualify, 39: 1243–1253. https://doi.org/10.2134/jeq2009.0082
 
Balvanera P., Pfisterer A.B., Buchmann N., He J.S., Nakashizuka T., Raffaelli D., Schmid B. (2006): Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9: 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x
 
Barefoot C.R., Willson K.G., Hart J.L., Schweitzer C.J., Dey D.C. (2019): Effects of thinning and prescribed fire frequency on ground flora in mixed Pinus-hardwood stands. Forest Ecology and Management, 432: 729–740. https://doi.org/10.1016/j.foreco.2018.09.055
 
Barreiro A., Díaz-Raviña M. (2021): Fire impacts on soil microorganisms: Mass, activity, and diversity. Current Opinion in Environmental Science and Health, 22: 100264. https://doi.org/10.1016/j.coesh.2021.100264
 
Bird M.I., Wynn J.G., Saiz G., Wurster C.M., McBeath A. (2015): The pyrogenic carbon cycle. Annual Review of Earth and Planetary Sciences, 43: 273–298. https://doi.org/10.1146/annurev-earth-060614-105038
 
Bond W.J., Woodward F.I., Midgley G.F. (2005): The global distribution of ecosystems in a world without fire. New Phytologist, 165: 525–538. https://doi.org/10.1111/j.1469-8137.2004.01252.x
 
Bouyoucos G.J. (1962): Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
 
Brewer J.S. (2016): Natural canopy damage and the ecological restoration of fire-indicative groundcover vegetation in an oak-pine gorest. Fire Ecology, 12: 105–126. https://doi.org/10.4996/fireecology.1202105
 
Certini G. (2005): Effects of fire on properties of forest soils: A review. Oecologia, 143: 1–10. https://doi.org/10.1007/s00442-004-1788-8
 
Chamshama S.A.O., Nwonwu F.O.C., Lundgren B., Kowero G.S. (2009): Plantation forestry in Sub-Saharan Africa: Silvicultural, ecological and economic aspects. Discovery and Innovation, 21: 42–49. https://doi.org/10.4314/dai.v21i3.48210
 
Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H. (2014): Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84: 45–67. https://doi.org/10.1890/13-0133.1
 
Delitti W., Ferran A., Trabaud L., Vallejo V.R. (2005): Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant composition and productivity. Plant Ecology, 177: 57–70. https://doi.org/10.1007/s11258-005-2140-z
 
Dobner Jr. M., Campoe O.C. (2019): Meteorological effects on 30-years-grown Pinus taeda under a gradient of crown thinning intensities in southern Brazil. Forest Ecology and Management, 453: 117624. https://doi.org/10.1016/j.foreco.2019.117624
 
Dymov A.A., Gabov D.N., Milanovskii E.Y. (2017): 13C-NMR, PAHs, WSOC and water repellence of fire-affected soils (Albic Podzols) in lichen pine forests, Russia. Environmental Earth Sciences, 76: 275. https://doi.org/10.1007/s12665-017-6600-2
 
Dymov A.A., Startsev V.V., Milanovsky E.Y., Valdes-Korovkin I.A., Farkhodov Y.R., Yudina A.V., Donnerhack O., Guggenberger G. (2021): Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma, 404: 115278. https://doi.org/10.1016/j.geoderma.2021.115278
 
Espinosa J., Madrigal J., De La Cruz A.C., Guijarro M., Jimenez E., Hernando C. (2018): Short-term effects of prescribed burning on litterfall biomass in mixed stands of Pinus nigra and Pinus pinaster and pure stands of Pinus nigra in the Cuenca Mountains (Central-Eastern Spain). Science of the Total Environment, 618: 941–951. https://doi.org/10.1016/j.scitotenv.2017.08.291
 
Fachin P.A., Costa Y.T., Thomaz E.L. (2021): Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow. Science of the Total Environment, 764: 142823. https://doi.org/10.1016/j.scitotenv.2020.142823
 
Fairman T.A., Nitschke C.R., Bennett L.T. (2022): Carbon stocks and stability are diminished by short-interval wildfires in fire-tolerant eucalypt forests. Forest Ecology and Management, 505: 119919. https://doi.org/10.1016/j.foreco.2021.119919
 
FAO (2001): Mean Annual Volume Increment of Selected Industrial Forest Plantation Species by L. Ugalde & O. Pérez. Forest Plantation Thematic Papers, Working Paper 1. Rome, FAO: 28.
 
FAO (2020): Global Forest Resources Assessment 2020: Main report. Rome, FAO: 186.
 
Felton A., Lindbladh M., Brunet J., Fritz Ö. (2010): Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management, 260: 939–947. https://doi.org/10.1016/j.foreco.2010.06.011
 
Felton A.M., Wam H.K., Stolter C., Mathisen K.M., Wallgren M. (2018): The complexity of interacting nutritional drivers behind food selection, a review of northern cervids. Ecosphere, 9: e02230. https://doi.org/10.1002/ecs2.2230
 
Fonseca F., de Figueiredo T., Nogueira C., Queirós A. (2017): Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma, 307: 172–180. https://doi.org/10.1016/j.geoderma.2017.06.018
 
Fox T.R., Jokela E.J., Allen H.L. (2007): The development of pine plantation silviculture in the southern United States. Journal of Forestry, 105: 337–347.
 
Giovannini M., Sun S. (2012): Welcome to your new journal: Endoscopic Ultrasound. Endosopic Ultrasound, 1: 1. https://doi.org/10.7178/eus.01.001
 
Guedes B.S., Olsson B.A., Sitoe A.A., Egnell G. (2018): Net primary production in plantations of Pinus taeda and Eucalyptus cloeziana compared with a mountain miombo woodland in Mozambique. Global Ecology and Conservation, 15: e00414. https://doi.org/10.1016/j.gecco.2018.e00414
 
Hsieh T.C., Ma K.H., Chao A. (2016): iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7: 1451–1456. https://doi.org/10.1111/2041-210X.12613
 
Hubbert K.R., Preisler H.K., Wohlgemuth P.M., Graham R.C., Narog M.G. (2006): Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma, 130: 284–298. https://doi.org/10.1016/j.geoderma.2005.02.001
 
Humpenöder F., Popp A., Dietrich J.P., Klein D., Lotze-Campen H., Bonsch M., Bodirsky B.L., Weindl I., Stevanovic M., Müller C. (2014): Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 9: 064029. https://doi.org/10.1088/1748-9326/9/6/064029
 
Iglay R.B., Leopold B.D., Miller D.A. (2014): Vegetation responses to fire and herbicide in intensively managed, mid-rotation pine. Forest Ecology and Management, 328: 69–78. https://doi.org/10.1016/j.foreco.2014.05.029
 
Jin L., Liu Y., Ning J., Liu L., Li X. (2019): Carbon storage of exotic slash pine plantations in subtropical China. Journal of Forest and Environmental Science, 35: 150–158.
 
Jones M.W., Coppola A.I., Santín C., Dittmar T., Jaffé R., Doerr S.H., Quine T.A. (2020): Fires prime terrestrial organic carbon for riverine export to the global oceans. Nature Communications, 11: 2791. https://doi.org/10.1038/s41467-020-16576-z
 
Kara O., Bolat I. (2009): Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9: 1151–1155. https://doi.org/10.1016/j.ecolind.2009.01.002
 
Karimi A., Abdollahi S., Ostad-Ali-Askari D.K., Eslamian S., Singh V.P. (2019): Predicting fire hazard areas using vegetation indexes, case study: Forests of Golestan province, Iran. Journal of Geography and Cartography, 4: 1–6. https://doi.org/10.24294/jgc.v2i1.451
 
Keeley J.E. (2009): Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal Wildland Fire, 18: 116–126. https://doi.org/10.1071/WF07049
 
Knicker H., Müller P., Hilscher A. (2007): How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma, 142: 178–196. https://doi.org/10.1016/j.geoderma.2007.08.010
 
Leite F., Bento-Gonçalves A., Vieira A., da Vinha L. (2015): Mega-fires around the world: A literature review. In: Bento Gonçalves A.J., Batista Vieira A.A. (eds): Wildland Fires – A Worldwide Reality. New York, Nova Science Publishers: 15–33.
 
Leites L.P., Zubizarreta-Gerendiain A., Robinson A.P. (2013): Modeling mensurational relationships of plantation-grown loblolly pine (Pinus taeda L.) in Uruguay. Forest Ecology and Management, 289: 455–462. https://doi.org/10.1016/j.foreco.2012.10.016
 
Li D., Niu S., Luo Y. (2012): Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytologist, 195: 172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x
 
Lucas-Borja M.E., Plaza-Álvarez P.A., Gonzalez-Romero J., Sagra J., Alfaro-Sánchez R., Zema D.A., Moya D., de las Heras J. (2019): Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Science of the Total Environment, 674: 615–622. https://doi.org/10.1016/j.scitotenv.2019.04.114
 
Martiarena R.A., Frangi J.L., Pinazo M.A., Von Wallis A., Fernández R.A. (2011): Effect of thinning and harvest type on storage and losses of phosphorous in Pinus taeda L. plantations in subtropical Argentina. International Journal of Forestry Research, 2011: 761532. https://doi.org/10.1155/2011/761532
 
Mataix-Solera J., Cerdà A., Arcenegui V., Jordán A., Zavala L.M. (2011): Fire effects on soil aggregation: A review. Earth-Science Reviews, 109: 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002
 
Matusick G., Hudson S.J., Garrett C.Z., Samuelson L.J., Kent J.D., Addington R.N., Parker J.M. (2020): Frequently burned loblolly–shortleaf pine forest in the southeastern United States lacks the stability of longleaf pine forest. Ecosphere, 11: e03055. https://doi.org/10.1002/ecs2.3055
 
Minervini M.G., Morrás H., Taboada M.Á. (2018): Efectos del fuego en la matriz del suelo. Consecuencias sobre las propiedades físicas y mineralógicas. Ecología Austral, 28: 12–27. (in Spanish) https://doi.org/10.25260/EA.18.28.1.0.127
 
Muñoz-Rojas M., Lewandrowski W., Erickson T.E., Dixon K.W., Merritt D.J. (2016): Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Science of the Total Environment, 572: 1385–1394. https://doi.org/10.1016/j.scitotenv.2016.02.086
 
Nave L.E., Vance E.D., Swanston C.W., Curtis P.S. (2011): Fire effects on temperate forest soil C and N storage. Ecological Applications, 21: 1189–1201. https://doi.org/10.1890/10-0660.1
 
Nghalipo E.N., Throop H.L. (2021): Vegetation patch type has a greater influence on soil respiration than does fire history on soil respiration in an arid broadleaf savanna woodland, central Namibia. Journal of Arid Environments, 193: 104577. https://doi.org/10.1016/j.jaridenv.2021.104577
 
Nichols L., Shinneman D.J., McIlroy S.K., de Graaff M.A. (2021): Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Applied Soil Ecology, 165: 103967. https://doi.org/10.1016/j.apsoil.2021.103967
 
Oksanen J., Blanchet F.G., Kindt R., et al. (2013): Vegan: Community Ecology Package. R Package Version. 2.0-10. Available at: https://cran.r-project.org/web/packages/vegan/index.html
 
Perdue J.H., Stanturf J.A., Young T.M., Huang X., Dougherty D., Pigott M., Guo Z. (2017): Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA. Forest Policy and Economics, 83: 146–155. https://doi.org/10.1016/j.forpol.2017.08.006
 
Peterson D.W., Reich P.B. (2008): Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. Plant Ecology, 194: 5–16. https://doi.org/10.1007/s11258-007-9270-4
 
Picchio R., Tavankar F., Latterini F., Jourgholami M., Karamdost Marian B., Venanzi R. (2020): Influence of different thinning treatments on stand resistance to snow and wind in loblolly pine (Pinus taeda L.) coastal plantations of northern Iran. Forests, 11: 1034. https://doi.org/10.3390/f11101034
 
Poorbabaei H., Poor-Rostam A. (2009): The effect of shelterwood silvicultural method on the plant species diversity in a beech (Fagus orientalis Lipsky) forest in the north of Iran. Journal of Forest Science, 55: 387–394. https://doi.org/10.17221/40/2008-JFS
 
Prendergast-Miller M.T., de Menezes A.B., Macdonald L.M., Toscas P., Bissett A., Baker G., Farrell M., Richardson A.E., Wark T., Thrall P.H. (2017): Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biology and Biochemistry, 109: 1–13. https://doi.org/10.1016/j.soilbio.2017.01.027
 
Prestemon J.P., Abt R.C. (2002): Timber products supply and demand. Available at: https://www.srs.fs.usda.gov/sustain/report/pdf/chapter_13e.pdf
 
Rafiei Jahed R., Fakhari M., Eslamdoust J., Fashat M., Kooch Y., Hosseini S.M. (2017): Restoration of degraded forest using native and exotic species: Investigation on soil productivity and stand quality (Case study: Chamestan-Mazandaran province). Iranian Journal of Forest and Poplar Research, 25: 483–494.
 
Reynolds H.L., Packer A., Bever J.D., Clay K. (2003): Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84: 2281–2291. https://doi.org/10.1890/02-0298
 
Richter C., Rejmánek M., Miller J.E.D., Welch K.R., Weeks J., Safford H. (2019): The species diversity × fire severity relationship is hump‐shaped in semiarid yellow pine and mixed conifer forests. Ecosphere, 10: e02882. https://doi.org/10.1002/ecs2.2882
 
Santín C., Doerr S.H., Kane E.S., Masiello C.A., Ohlson M., de la Rosa J.M., Preston C.M., Dittmar T. (2016a): Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 22: 76–91. https://doi.org/10.1111/gcb.12985
 
Santín C., Doerr S.H., Merino A., Bryant R., Loader N.J. (2016b): Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma, 264: 71–80. https://doi.org/10.1016/j.geoderma.2015.09.021
 
Schenker N., Gentleman J.F. (2001): On judging the significance of differences by examining the overlap between confidence intervals. The American Statistician, 55: 182–186. https://doi.org/10.1198/000313001317097960
 
Soleimany M., Eslamdoust J., Akbarinia M., Kooch Y. (2021): Soil aggregate stability index and particulate organic matter in response to differently afforested lands in the temperate regions of Iran. Journal of Forest Science, 67: 376–384. https://doi.org/10.17221/20/2021-JFS
 
Stavi I. (2019): Wildfires in grasslands and shrublands: A review of impacts on vegetation, soil, hydrology, and geomorphology. Water, 11: 1042. https://doi.org/10.3390/w11051042
 
Stephan K., Kavanagh K.L., Koyama A. (2015): Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components. PLoS One, 10: e0119560. https://doi.org/10.1371/journal.pone.0119560
 
Ürker O., Tavsanoglu C., Gürkan B. (2018): Post-fire recovery of the plant community in Pinus brutia forests: Active vs. indirect restoration techniques after salvage logging. iForest – Biogeosciences and Forestry, 11: 635–642. https://doi.org/10.3832/ifor2645-011
 
Volkova L., Weiss-Aparicio A.G., Weston C.J. (2019): Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia. Science of the Total Environment, 670: 328–336. https://doi.org/10.1016/j.scitotenv.2019.03.226
 
Wallinger R.S. (2002): Intensive forest management: Growing wood and preserving biodiversity in the US South and Brazil. Forest Operations Review, 4: 5–10.
 
Westlake S.M., Mason D., Lázaro-Lobo A., Burr P., McCollum J.R., Chance D., Lashle M.A. (2020): The magnet effect of fire on herbivores affects plant community structure in a forested system. Forest Ecology and Management, 458: 117794. https://doi.org/10.1016/j.foreco.2019.117794
 
Xiang X., Shi Y., Yang J., Kong J., Lin X., Zhang H., Zeng J., Chu H. (2015): Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Reports, 4: 3829. https://doi.org/10.1038/srep03829
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti