Norway spruce production and static stability in IUFRO thinning experiments in the Czech Republic

https://doi.org/10.17221/188/2020-JFSCitation:

Dušek D., Novák J., Kacálek D., Slodičák M. (2021): Norway spruce production and static stability in IUFRO thinning experiment. J. For. Sci., 67: 185–194.

download PDF

Despite recent issues, Norway spruce remains the most important commercial tree species which might be demanded henceforth for its broadly utilizable wood. Even before foresters faced both the bark beetle outbreaks and spruce decline, spruce monospecific stands were known to be prone also to other damage due to snow and wind. On this basis, measures that help prevent such failures were looked for, which resulted in the establishment of international IUFRO experimental series focused on impacts of different thinning regimes on stability and production of spruce stands. The thinning treatments differed in numbers of trees removed and retained on the site when dominant height of crop trees was reached or allowable cut in non-crop trees was accumulated. Also effects of different width of skid trails were tested. The study summarizes the results from the two IUFRO experiments in the Czech Republic. Effects of thinning regimes on spruce were found positive though thinning reduced the total volume production of wood while improving crop-tree stability which enhanced production safety. Different widths of skid trails had no effect on wood increment. Early thinning of spruce can be used to prevent their damage. No such measure, however, can alleviate the spruce decline.

References:
Abetz P. (1977): Programme of the European research in stem number of spruce (Picea abies Karst.). Mitteilungen der Forstlicher Versuchs- und Forschungsanstalt Baden-Württemberg, 80: 15–21.
 
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzales P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.H., Allard G., Running S.W., Semerci A., Cobb N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risk for forests. Forest Ecology and Management, 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
 
Bauhus J., Forrester D.I., Pretzsch H., Felton A., Pyttel P., Benneter A. (2017): Silvicultural options for mixed-species stands. In: Pretzsch H., Forrester D., Bauhus J. (eds.): Mixed-species Forests. Ecology and Management. Berlin, Heidelberg, Springer: 433–501.
 
Blackburn P., Petty J.A. (1988): Theoretical calculations of the influence of spacing on stand stability. Forestry: An International Journal of Forest Research, 61: 235–244.  https://doi.org/10.1093/forestry/61.3.235
 
Černý M., Pařez J., Malík Z. (1996): Růstové a taxační tabulky hlavních dřevin České republiky. Jílové u Prahy, IFER: 245.
 
Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R., Bucci S.J., Feild T.S., Gleason S.M., Hacke U.G., Jacobsen A.L., Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mencuccini M., Mitchell P.J., Nardini A., Pittermann J., Pratt B.R., Sperry J.S., Westoby M., Wright I.J., Zanne A.E. (2012): Global convergence in the vulnerability of forests to drought. Nature, 491: 752–755. https://doi.org/10.1038/nature11688
 
Chroust L. (1981): Bericht über die IUFRO – Versuchsfläche Nr. 14. In: Der Europäische Stammzahlversuch in Fichte (Picea abies Karst.). Freiburg i. Breisgau, IUFRO: 227–238. (in German)
 
Domke G.M., Oswalt C.M., Woodall C.W., Turner J.A. (2013): Estimation of merchantable bole volume and biomass above sawlog top in the National Forest Inventory of the United States. Journal of Forestry, 111: 383–387. https://doi.org/10.5849/jof.13-042
 
Dušek D., Slodičák M., Novák J., Kacálek D. (2015): Vliv šířek linek na produkci smrkových porostů. Zprávy lesnického výzkumu, 60: 171–176. (in Czech)
 
Gizachew B., Brunner A. (2011): Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway. Scandinavian Journal of Forest Research, 26: 543–554. https://doi.org/10.1080/02827581.2011.611477
 
Gizachew B., Brunner A., Øyen B-H. (2012): Stand responses to initial spacing in Norway spruce plantations in Norway. Scandinavian Journal of Forest Research Volume, 27: 637–648. https://doi.org/10.1080/02827581.2012.693191
 
Hein S., Herbstritt S., Kohnle U. (2008): Auswirkung der Z-Baum-Auslesedurchforstung auf Wachstum, Sortenertrag und Wertleistung im europäischen Fichten-Stammzahlversuch (Picea abies [L.] Karst.) in Südwestdeutschland. Allgemeine Forst- und Jagdzeitung, 179: 192–201. (in German)
 
Herbstritt S., Kohnle U., Abetz P., Kenk G. (2006): The European stem number experiment in Norway spruce (Picea abies (L.) Karst.). 3. Report. Baden-Württemberg, Forstliche Versuchs- und Forschungsanstalt: 132.
 
Hlásny T., Holuša J., Štěpánek P., Turčáni M., Polčák N. (2011): Expected impact of climate change on forests: Czech Republic as a case study. Journal of Forest Science, 57: 422–431. https://doi.org/10.17221/103/2010-JFS
 
Hlásny T., Mátyás C., Seidl R., Kulla L., Merganovičová K., Trombik J., Dobor L., Barcza Z., Konôpka B. (2014): Climate change increases the drought risk in Central European forests: What are the option for adaptation? Lesnícky časopis – Forestry Journal, 60: 5–18.
 
Horák J., Novák J. (2009): Effect of stand segmentation on growth and development of Norway spruce stands. Journal of Forest Science, 55: 332–339. https://doi.org/10.17221/61/2008-JFS
 
Jandl J., Spathelf P., Bolte A., Prescott C.E. (2019): Forest adaptation to climate change – is non-management an option? Annals of Forest Science, 76: 1–13.
 
Katrevičs J., Džerina B., Neimane D., Desaine I., Bigača Z., Jansons A. (2018): Production and profitability of low density Norway spruce (Picea abies (L.) Karst.) plantation at 50 years of age: case study from eastern Latvia. Agronomy Research 16: 113–121.
 
Konôpka J., Konôpka B. (2017): Výchova smrekových porastov z hľadiska statickej stability na výskumných plochách IUFRO – Biely Váh (Slovensko). Zprávy lesnického výzkumu, 62: 223–233. (in Slovak)
 
Konôpka J., Petráš R., Toma R. (1987): Štíhlostný koeficient hlavných drevín a jeho význam pri statickej stabilite porastov. Lesnictví, 33: 887–904. (in Slovak)
 
Korpeľ Š., Saniga M. (1995): Vplyv rozdielneho počtu sadeníc a ich sponu na rast a formovanie smrekových porastov. Vedecké studie 3/1995, Zvolen, Technická univerzita vo Zvolene: 39. (in Slovak)
 
Korsuň F. (1961): Hmotové tabulky pro smrk. Lesnictví, 7: 275–304. (in Czech)
 
Kuliešis A., Saladis J. (1998): The effect of early thinning on the growth of pine and spruce stands. Baltic Forestry, 4: 8–16.
 
Laurent M., Antoine N., Joël G. (2003): Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 183: 47–60. https://doi.org/10.1016/S0378-1127(03)00098-7
 
Lekes V., Dandul I. (2000): Using airflow modelling and spatial analysis for defining wind damage risk classification (WINDARC). Forest Ecology and Management, 135: 331–344. https://doi.org/10.1016/S0378-1127(00)00290-5
 
Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M.J., Marchetti M. (2010): Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259: 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
 
Liziniewicz M., Ekö P.M., Klang F. (2016): Effects of five tree-selection strategies when thinning spruce (Picea abies) stands: a case study in a field trail in southern Sweden. Scandinavian Journal of Forest Research, 31: 495–506. https://doi.org/10.1080/02827581.2015.1130852
 
Maccurrach R.S. (1991): Spacing: an option for reducing storm damage. Scottish Forestry, 45: 285–297.
 
Mäkinen H., Isomäki A. (2004): Thinning intensity and growth of Norway spruce stands in Finland. Forestry: An International Journal of Forest Research, 77: 349–364. https://doi.org/10.1093/forestry/77.4.349
 
Mäkinen H., Hein S. (2006): Effect of wide spacing on increment and branch properties of young Norway spruce. European Journal of Forest Research, 125: 239–248. https://doi.org/10.1007/s10342-006-0115-9
 
Maracchi G., Sirotenko O., Bindi M. (2005): Impact of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climate Change, 70: 117–135. https://doi.org/10.1007/s10584-005-5939-7
 
Mason W.L., Petr M., Bathgate S. (2012): Silvicultural strategies for adapting planted forests to climate change: from theory to practice. Journal of Forest Science, 58: 265–277. https://doi.org/10.17221/105/2011-JFS
 
Müller F., Augustynczik A.L.D., Hanewinkel M. (2019): Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history. Annals of Forest Science, 76: 1–16. https://doi.org/10.1007/s13595-019-0884-1
 
Milne R. (1995): Modelling mechanical stresses in living Sitka spruce stems. In: Coutts M.P., Grace J. (eds.): Wind and Trees. Cambridge, Cambridge University Press: 165–181.
 
Näslund M. (1937): Die Durchforstungsversuche der Forstlichen Versuchsanstalt Schwedens in Kiefernwald. In: Meddelanden fran Statens Skogsförsöksanstalt. Mitteilungen aus der Forstlichen Versuchsanstalt Schwedens. Stockholm, Esselte AB: 121–169. (in German)
 
Navratil S. (1995): Minimizing Wind Damage in Alternative Silviculture Systems in Boreal Mixedwoods. Canada-Alberta Partnership Agreement in Forestry Report 124. Edmonton, Canadian Forestry Service: 86.
 
Neumann M., Rössler G. (2012): Die Wuchsleistung auf Dauerversuchen: Nutzholz-Biomasse-Nährstoffe. In: Nagel J.: Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde, Ottenstein, May 21–23, 2012: 93–101. (in German)
 
Pape R. (1999a): Effects of thinning regime on the wood properties and stem quality of Picea abies. Scandinavian Journal of Forest Research, 14: 38–50. https://doi.org/10.1080/02827589908540807
 
Pape R. (1999b): Influence of thinning and tree diameter class on the development of basic density and annual ring width in Picea abies. Scandinavian Journal of Forest Research, 14: 27–37.
 
Pařez J. (1981): Internationaler europäischer IUFRO – Durchforstungsversuch Nr. 13 im Forstbetrieb Vítkov – ČSSR. In: Der Europäische Stammzahlversuch in Fichte (Picea abies Karst.). Freiburg i. Breisgau, IUFRO: 207–225. (in German)
 
Pettersson N. (1993): The effect of density after precommercial thinning on volume and structure in Pinus sylvestris and Picea abies stands. Scandinavian Journal of Forest Research, 8: 528–539. https://doi.org/10.1080/02827589309382799
 
Pfister O., Wallentin C., Nilsson U., Ekö P.M. (2007): Effects of wide spacing and thinning strategies on wood quality in Norway spruce (Picea abies) stands in southern Sweden. Scandinavian Journal of Forest Research, 22: 333–343. https://doi.org/10.1080/02827580701504951
 
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team (2020): nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-150. Available at: https://cran.r-project.org/package=nlme
 
Pretzsch H. (2009): Forest dynamics, growth and yield. Berlin, Heidelberg, Springer: 664.
 
Rennenberg H., Loreto F., Polle A., Brilli F., Fares S., Beniwal R.S., Gessler A. (2006): Physiological responses of forest trees to heat and drought. Plant Biology, 8: 556–571. https://doi.org/10.1055/s-2006-924084
 
Rollinson T.J.D. (1988): Respacing Sitka spruce. Forestry: An International Journal of Forest Research, 61: 1–22. https://doi.org/10.1093/forestry/61.1.1-a
 
Slodičák M., Novák J. (2006): Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. Forest Ecology and Management, 224: 252–257. https://doi.org/10.1016/j.foreco.2005.12.037
 
Slodičák M., Novák J. (2007): Růst, struktura a statická stabilita smrkových porostů s různým režimem výchovy. Kostelec nad Černými lesy, Lesnická práce: 128.
 
Slodičák M., Novák J., Skovsgaard J.P. (2005): Wood production, litter fall and humus accumulation in a Czech thinning experiment in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 209: 157–166. https://doi.org/10.1016/j.foreco.2005.01.011
 
Štefančík I., Strmeň S., Podrázský V., Vacek S. (2012): Growth responses of a Norway spruce (Picea abies [L.] Karst.) small pole-stage stand in a region exhibiting extensive decline of allochthonous spruce forests to differentiated thinning. Folia Oecologica, 39: 77–87.
 
Tatarinov F.A., Cienciala E. (2009): Long-term simulation of the effect of climate changes on the growth of main Central-European forest species. Ecological Modelling, 220: 3081–3088. https://doi.org/10.1016/j.ecolmodel.2009.01.029
 
Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85–93.
 
Vicena I. (1964): Ochrana proti polomům. Praha, Státní zemědělské nakladatelství: 178.
 
Wallentin C., Nilsson U. (2014): Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry: An International Journal of Forest Research, 87: 229–238. https://doi.org/10.1093/forestry/cpt046
 
Wang Y., Titus S.J., LeMay V.M. (1998): Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Canadian Journal of Forest Research, 28: 1171–1183. https://doi.org/10.1139/x98-092
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti