Effects of nanoparticle treatments on propagation of Prunus mahaleb L. by seed

https://doi.org/10.17221/18/2017-JFSCitation:Goodarzi G.R., Payam Noor V., Ahmadloo F. (2017): Effects of nanoparticle treatments on propagation of Prunus mahaleb L. by seed. J. For. Sci., 63: 408-416.
download PDF
We examined the effects of nanoparticles (NPs) of TiO2 and ZnO at 0.5, 1, 2 or 3% concentrations for 10, 20, and 30 min in stratified seeds of Prunus mahaleb Linnaeus. Then, seedlings produced were irrigated to field capacity with NP solutions at control, 1, 5, and 10% concentration for 7 months in the greenhouse conditions. Treating seeds at 1% concentrations of TiO2-NPs for 20 min resulted in the highest germination percentage (65%) and at concentrations of 3% for 30 min it showed the lowest germination percentage (13%). The highest total seedling height was obtained after exposure of seeds to 0.5% TiO2-NPs for 10 min. Irrigation of seedlings with TiO2-NPs at the concentration of 1% seems to be a suitable method how to increase their total height, survival, and total dry weight. A decrease in the relative water content and an increase in proline were observed in response to the application of high levels of NPs.
References:
Al-Said Mansour S., Hifnawy Mohamed S. (1986): Dihydrocoumarin and Certain Other Coumarins from Prunus mahaleb Seeds. Journal of Natural Products, 49, 721-721  https://doi.org/10.1021/np50046a040
 
Bao-shan Lin, shao-qi Diao, Chun-hui Li, Li-jun Fang, Shu-chun Qiao, Min Yu (2004): Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forestry Research, 15, 138-140  https://doi.org/10.1007/BF02856749
 
Baskin C.C., Baskin J.M. (1998): Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, Academic Press: 666.
 
Bates L. S., Waldren R. P., Teare I. D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207  https://doi.org/10.1007/BF00018060
 
Bhati-Kushwaha H., Kaur A., Malik C.P. (2013): The synthesis and role of biogenic nanoparticles in overcoming chilling stress. Indian Journal of Plant Sciences, 2: 2319–3824.
 
Burke David, Pietrasiak Nicole, Situ Shu, Abenojar Eric, Porche Mya, Kraj Pawel, Lakliang Yutthana, Samia Anna (2015): Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes. International Journal of Molecular Sciences, 16, 23630-23650  https://doi.org/10.3390/ijms161023630
 
Dhopte A.M. (2002): Principles and Techniques for Plant Scientists. Jodhpur, Agrobios: 373.
 
Dimkpa Christian O., McLean Joan E., Latta Drew E., Manangón Eliana, Britt David W., Johnson William P., Boyanov Maxim I., Anderson Anne J. (2012): CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, -  https://doi.org/10.1007/s11051-012-1125-9
 
Dirr M.A., Heuser C.W.J. (1987): The Reference Manual of Woody Plant Propagation: From Seed to Tissue Culture. Athens, Varsity Press, Inc.: 239.
 
Ghars Mohamed Ali, Parre Elodie, Debez Ahmed, Bordenave Marianne, Richard Luc, Leport Laurent, Bouchereau Alain, Savouré Arnould, Abdelly Chedly (2008): Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165, 588-599  https://doi.org/10.1016/j.jplph.2007.05.014
 
Grisez T.J., Barbour J.R., Karrfalt R.P. (2008): Prunus L. cherry, peach and plum. In: Bonner F.T., Karrfalt R.P. (eds): The Woody Plant Seed Manual. Washington, D.C., USDA Forest Service: 875–890.
 
Harrison (formerly Perry) Carole C. (1996): Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry, 41, 37-42  https://doi.org/10.1016/0031-9422(95)00576-5
 
Hartmann H.T., Kester D.E., Davies F.T., Geneve R.L. (1997): Plant Propagation: Principles and Practices. 6th Ed. Englewood Cliffs, Prentice-Hall, Inc.: 770.
 
Hossain M.A., Arefin M.K, Khan B.M., Rahman M.A. (2005): Effects of seed treatments on germination and seedling growth attributes of Horitaki (Terminalia chebula Retz.) in the nursery. Research Journal of Agriculture and Biological Sciences, 1: 135–141.
 
Hu J., Xie X.J., Wang Z.F., Song W.J. (2006): Sand priming improves alfalfa germination under high-salt concentration stress. Seed Science and Technology, 34, 199-204  https://doi.org/10.15258/sst.2006.34.1.22
 
Jayarambabu N., Siva Kumari B., Venkateswara Rao K., Prabhu Y.T. (2014): Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. International Journal of Current Engineering and Technology, 4: 3411–3416.
 
Jin Cheng-Wu, Sun Yan-Lin, Cho Dong-Ha (2012): Changes in photosynthetic rate, water potential, and proline content in kenaf seedlings under salt stress. Canadian Journal of Plant Science, 92, 311-319  https://doi.org/10.4141/cjps2011-144
 
Khot Lav R., Sankaran Sindhuja, Maja Joe Mari, Ehsani Reza, Schuster Edmund W. (2012): Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64-70  https://doi.org/10.1016/j.cropro.2012.01.007
 
Kollmann Johannes, Pflugshaupt Kaspar (2005): Population structure of a fleshy-fruited species at its range edge – the case of Prunus mahaleb L. in northern Switzerland. Botanica Helvetica, 115, 49-61  https://doi.org/10.1007/s00035-005-0715-x
 
Lei Zheng, Mingyu Su, Xiao Wu, Chao Liu, Chunxiang Qu, Liang Chen, Hao Huang, Xiaoqing Liu, Fashui Hong (2008): Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. Biological Trace Element Research, 121, 69-79  https://doi.org/10.1007/s12011-007-8028-0
 
Ma J. F., Yamaji N. (2008): Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049-3057  https://doi.org/10.1007/s00018-008-7580-x
 
NESME XAVIER (1985): RESPECTIVE EFFECTS OF ENDOCARP, TESTA AND ENDOSPERM, AND EMBRYO ON THE GERMINATION OF RASPBERRY ( Rubus idaeus L.) SEEDS. Canadian Journal of Plant Science, 65, 125-130  https://doi.org/10.4141/cjps85-017
 
Panwar P., Bhardwaj S.D. (2005): Handbook of Practical Forestry. Jodhpur, Agrobios: 191.
 
Pipinis E., Milios E., Mavrokordopoulou O., Gkanatsiou C., Aslanidou M., Smiris P. (2012): Effect of pretreatments on seed germination of Prunus mahaleb L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40: 183–189.
 
Raskar S.V., Laware S.L. (2014): Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3: 467–473.
 
Rathinasabapathi B (): Metabolic Engineering for Stress Tolerance: Installing Osmoprotectant Synthesis Pathways. Annals of Botany, 86, 709-716  https://doi.org/10.1006/anbo.2000.1254
 
Rezaei F., Moaveni P., Mozafari H. (2015): Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran. Biological Forum – An International Journal, 7: 957–964.
 
Monica Ruffini Castiglione, Cremonini Roberto (2009): Nanoparticles and higher plants. Caryologia, 62, 161-165  https://doi.org/10.1080/00087114.2004.10589681
 
Sahebi Mahbod, Hanafi Mohamed M., Siti Nor Akmar Abdullah, Rafii Mohd Y., Azizi Parisa, Tengoua F. F., Nurul Mayzaitul Azwa Jamaludin, Shabanimofrad M. (2015): Importance of Silicon and Mechanisms of Biosilica Formation in Plants. BioMed Research International, 2015, 1-16  https://doi.org/10.1155/2015/396010
 
Savithramma N., Ankanna S., Bhumi G. (2012): Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon. Nano Vision, 2: 61–68.
 
Saxton K. E., Rawls W. J., Romberger J. S., Papendick R. I. (1986): Estimating Generalized Soil-water Characteristics from Texture1. Soil Science Society of America Journal, 50, 1031-  https://doi.org/10.2136/sssaj1986.03615995005000040039x
 
Schmidt L. (2000): Guide to Handling of Tropical and Subtropical Forest Seed. Humlabaek, Danida Forest Seed Centre: 511.
 
Seeger Eva Mareike, Baun Anders, Kästner Matthias, Trapp Stefan (2009): Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments, 9, 46-53  https://doi.org/10.1007/s11368-008-0034-0
 
Sekhavati N., Hoseini M., Akbarinia M., Rezaei A. (2011): Effects of gibberellic acid and cold stratification on seed dormancy and seed germination on seeds with and without coat of Cerasus mahaleb (L.) Mill. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 19: 193–204.
 
Venier P., Carrizo García C., Cabido M., Funes G. (2012): Survival and germination of three hard-seeded Acacia species after simulated cattle ingestion: The importance of the seed coat structure. South African Journal of Botany, 79, 19-24  https://doi.org/10.1016/j.sajb.2011.11.005
 
Yang Fan, Liu Chao, Gao Fengqing, Su Mingyu, Wu Xiao, Zheng Lei, Hong Fashui, Yang Ping (2007): The Improvement of Spinach Growth by Nano-anatase TiO2 Treatment Is Related to Nitrogen Photoreduction. Biological Trace Element Research, 119, 77-88  https://doi.org/10.1007/s12011-007-0046-4
 
Yinfeng, X., Xiaohua Y. (2009): Effects of nano-meter TiO2 on germination and growth physiology of Pinus tabulaeformis. Acta Botanica Boreali-Occidentalia Sinica, 29: 2013–2018.
 
Zarafshar M., Akbarinia M., Askari H., Hosseini S.M., Rahaie M., Struve D. (2015): Toxicity assessment of SiO2 nanoparticles to pear seedlings. International Journal of Nanoscience and Nanotechnology, 11: 13–22.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences