Tree-ring climate response of Jeffrey pine in the Cascade Creek Watershed, Northern California

https://doi.org/10.17221/191/2020-JFSCitation:

Bista R., Mohr M., Saldaña D., Angulo G., Chhetri P.K. (2021): Tree-ring climate response of Jeffrey pine in the Cascade Creek Watershed, Northern California. J. For. Sci., 67: 285–297.

download PDF

Understanding the forest response to ongoing climate change is crucial in forest management strategies under anticipated climate adversity. To understand the retrospective growth dynamics of Jeffrey pine (Pinus jeffreyi Grev. & Balf.), tree-ring chronology from the subalpine forest in the Lake Tahoe Basin, California was correlated with air temperature, precipitation, and Palmar Drought Severity Index (PDSI). The years 1757, 1782, 1886, 1859, 1876, 1920, 1929–30, 1977, 1988–89, 2001–02, 2008, and 2014 were some of the years with noticeable low growth. There was robust growth in 1747–49, 1792, 1828, 1866–68, 1913, 1969, 1984, 1998, and 2011. Ring width index (RWI) and basal area increment showed a recent growth increase. Climate-growth response analysis revealed the growth-inhibiting influence of the hot and dry summer. More pronouncedly, warm and wet winter was found to be conducive to tree growth in the following year. A significant growth correlation with the previous year climate (stronger with PDSI) and its absence in current spring may be suggestive of potential growth stimulation by predicted warmer and longer growing season in the future. However, since the RWI chronology consisted mostly of mature trees and because the old cambial age tends to have signal divergence, further studies incorporating younger trees and cohabitant species would provide deeper insights into the growth-climate response.

References:
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S.W., Semerci A., Cobb N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
 
Babst F., Bodesheim P., Charney N., Friend A.D., Girardin M.P., Klesse S., Moore D.J.P., Seftigen K., Björklund J., Bouriaud O., Dawson A., DeRose R.J., Dietze M.C., Eckes A.H., Enquist B., Frank D.C., Mahecha M.D., Poulter B., Record S., Trouet V., Turton R.H., Zhang Z., Evans M.E.K. (2018): When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197: 1–20. https://doi.org/10.1016/j.quascirev.2018.07.009
 
Biondi F., Qeadan F. (2008): A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment. Tree-Ring Research, 64: 81–96. https://doi.org/10.3959/2008-6.1
 
Briffa K.R. (1999): Interpreting high-resolution proxy climate data – the example of dendroclimatology. In: von Storch H., Navarra A. (eds): Analysis of Climate Variability. Berlin, Springer: 77–94.
 
Bunn A.G. (2008): A dendrochronology program library in R (dplR). Dendrochronologia, 26: 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
 
Bunn A.G., Graumlich L.J., Urban D.L. (2005): Trends in twentieth-century tree growth at high elevations in the Sierra Nevada and White Mountains, USA. The Holocene, 15: 481–488. https://doi.org/10.1191/0959683605hl827rp
 
Cook E.R., Kairiukstis L.A. (1990): Methods of Dendrochronology: Applications in the Environmental Science. Dordrecht, Kluwer Academic Publishers: 394.
 
Dai A., Trenberth K.E., Qian T. (2004): A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5: 1117–1130. https://doi.org/10.1175/JHM-386.1
 
Dolanc C.R., Thorne J.H., Safford H.D. (2013a): Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007. Global Ecology and Biogeography, 22: 264–276. https://doi.org/10.1111/j.1466-8238.2011.00748.x
 
Dolanc C.R., Westfall R.D., Safford H.D., Thorne J.H., Schwartz M.W. (2013b): Growth-climate relationships for six subalpine tree species in a Mediterranean climate. Canadian Journal of Forest Research, 43: 1114–1126. https://doi.org/10.1139/cjfr-2013-0196
 
Dolanc C.R., Safford H.D., Thorne J.H., Dobrowski S.Z. (2014): Changing forest structure across the landscape of the Sierra Nevada, CA, USA, since the 1930s. Ecosphere, 5: 1–26. https://doi.org/10.1890/ES14-00103.1
 
Ettl G.J., Peterson D.L. (1995): Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Global Change Biology, 1: 213–230. https://doi.org/10.1111/j.1365-2486.1995.tb00023.x
 
Fites-Kaufman J.A., Rundel P., Stephenson N., Weixelman D.A. (2007): Montane and subalpine vegetation of the Sierra Nevada and Cascade Ranges. In: Barbour M., Keeler-Wolf T., Schoenherr A.A. (eds): Terrestrial Vegetation of California. 3rd Ed. Berkley, University of California Press: 456–501.
 
Fritts H.C. (1976): Tree Rings and Climate. London, Academic Press: 567.
 
Granda E., Camarero J.J., Gimeno T.E., Martinez-Fernandez J., Valladares F. (2013): Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. European Journal of Forest Research, 132: 469–480. https://doi.org/10.1007/s10342-013-0687-0
 
Granier A., Reichstein M., Bréda N., Janssens I.A., Falge E., Ciais P., Grünwald T., Aubinet M.,et al. (2007): Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143: 123–145. https://doi.org/10.1016/j.agrformet.2006.12.004
 
Griffin D., Anchukaitis K.J. (2014): How unusual is the 2012–2014 California drought? Geophysical Research Letters, 41: 9017–9023. https://doi.org/10.1002/2014GL062433
 
Holmes R.L. (1983): Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43: 69–75.
 
Hubbert K.R., Graham R.C., Anderson M.A. (2001): Soil and weathered bedrock: Components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal, 65: 1255–1262. https://doi.org/10.2136/sssaj2001.6541255x
 
Jiao L., Jiang Y., Zhang W.-T., Wang M.-C., Zhang L.-N., Zhao S.-D. (2015): Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China. Trees, 29: 1673–1686. https://doi.org/10.1007/s00468-015-1248-6
 
Jones J. (2015): California’s most significant droughts: Comparing historical and recent conditions. California Department of Water Resources, State of California. Available at: https://cawaterlibrary.net/wp-content/uploads/2017/09/California_Signficant_Droughts_2015.pdf (accessed August 18, 2020).
 
LeBlanc D.C. (1990): Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Canadian Journal of Forest Research, 20: 1399–1407. https://doi.org/10.1139/x90-185
 
LeBlanc D., Terrell M. (2001): Dendroclimatic analyses using Thornthwaite-Mather-type evapotranspiration models: A bridge between dendroecology and forest simulation models. Tree-Ring Research, 57: 55–66.
 
Lebourgeois F. (2000): Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Annals of Forest Science, 57: 155–164. https://doi.org/10.1051/forest:2000166
 
Lebourgeois F., Bréda N., Ulrich E., Granier A. (2005): Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19: 385–401. https://doi.org/10.1007/s00468-004-0397-9
 
Lepley K., Touchan R., Meko D., Shamir E., Graham R., Falk D. (2020): A multi-century Sierra Nevada snowpack reconstruction modeled using upper-elevation coniferous tree rings (California, USA). The Holocene, 30: 1266–1278. https://doi.org/10.1177/0959683620919972
 
Maloney P.E., Eckert A.J., Vogler D.R., Jensen C.E., Delfino Mix A., Neale D.B. (2016): Landscape biology of Western White Pine: Implications for conservation of a widely-distributed five-needle pine at its southern range limit. Forests, 7: 93. https://doi.org/10.3390/f7050093
 
Marqués L., Camarero J.J., Gazol A., Zavala M.A. (2016): Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management, 381: 157–167. https://doi.org/10.1016/j.foreco.2016.09.021
 
Marziliano P.A., Tognetti R., Lombardi F. (2019): Is tree age or tree size reducing height increment in Abies alba Mill. at its southernmost distribution limit? Annals of Forest Science, 76: 17.
 
Meko D.M., Woodhouse C.A. (2005): Tree-ring footprint of joint hydrologic drought in Sacramento and Upper Colorado river basins, western USA. Journal of Hydrology, 308: 196–213. https://doi.org/10.1016/j.jhydrol.2004.11.003
 
Millar C.I., Westfall R.D., Delany D.L., King J.C., Graumlich L.J. (2004): Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36: 181–200. https://doi.org/10.1657/1523-0430(2004)036[0181:ROSCIT]2.0.CO;2
 
NIDIS (2020): What is NIDIS? National Integrated Drought Information System,| Drought.gov. Available at: https://www.drought.gov/drought/what-nidis
 
NESDIS (2020): Divisional Data Select. National Environmental Satellite, Data, and Information Service Available at: https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp
 
Palmer W.C. (1965): Meteorological Drought. Washington, U.S. Department of Commerce, Weather Bureau: 68.
 
Peterson D.L. (1998): Climate, limiting factors and environmental change in high-altitude forests of Western North America. In: Beniston M., Innes J.L. (eds): The Impacts of Climate Variability on Forests. Berlin, Heidelberg, Springer-Verlag: 191–208.
 
Peterson D.L., Arbaugh M.J., Robinson L.J., Derderian B.R. (1990): Growth trends of whitebark pine and lodgepole pine in a subalpine Sierra Nevada forest, California, USA. Arctic and Alpine Research, 22: 233–243. https://doi.org/10.2307/1551586
 
Peterson D.W., Peterson D.L., Ettl G.J. (2002): Growth responses of subalpine fir to climatic variability in the Pacific Northwest. Canadian Journal of Forest Research, 32: 1503–1517. https://doi.org/10.1139/x02-072
 
Proutsos N., Tigkas D. (2020): Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere, 11: 554. https://doi.org/10.3390/atmos11060554
 
R Core Team (2020): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/
 
Rathgeber C.B.K., Misson L., Nicault A., Guiot J. (2005): Bioclimatic model of tree radial growth: Application to the French Mediterranean Aleppo pine forests. Trees, 19: 162–176. https://doi.org/10.1007/s00468-004-0378-z
 
Rathgeber C.B.K., Cuny H.E., Fonti P. (2016): Biological basis of tree-ring formation: A crash course. Frontiers in Plant Science, 7: 734. https://doi.org/10.3389/fpls.2016.00734
 
Salzer M.W., Hughes M.K., Bunn A.G., Kipfmueller K.F. (2009): Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences, 106: 20348–20353. https://doi.org/10.1073/pnas.0903029106
 
Schladow S.G. (2018): Tahoe: State of the Lake Report. Available at: https://tahoe.ucdavis.edu/sites/g/files/dgvnsk4286/files/inline-files/SOTL_Complete_reduced_1.pdf
 
Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. (1990): Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 9–38.
 
Seiler R., Kirchner J.W., Krusic P.J., Tognetti R., Houlie N., Andronico D., Cullotta S., Egli M., D'Arrigo R., Cherubini P. (2017): Insensitivity of tree-ring growth to temperature and precipitation sharpens the puzzle of enhanced pre-eruption NDVI on Mt. Etna (Italy). PLoS ONE, 12: e0169297. https://doi.org/10.1371/journal.pone.0169297
 
Speer J.H. (2010): Fundamentals of Tree-ring Research. Tucson, University of Arizona Press: 333.
 
Taylor A.H., Vandervlugt A.M., Maxwell R.S., Beaty R.M., Airey C., Skinner C.N. (2014): Changes in forest structure, fuels and potential fire behaviour since 1873 in the Lake Tahoe Basin, USA. Applied Vegetation Science, 17: 17–31. https://doi.org/10.1111/avsc.12049
 
van der Maaten-Theunissen M., van der Maaten E., Bouriaud O. (2015): pointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia, 35: 34–38. https://doi.org/10.1016/j.dendro.2015.05.006
 
Van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.F., Fulé P.Z., Harmon M.E., Larson A.J., Smith J.M., Taylor A.H., Veblen T.T. (2009): Widespread increase of tree mortality rates in the western United States. Science, 323: 521–524. https://doi.org/10.1126/science.1165000
 
Vose J.M., Peterson D.L., Domke G.M., Fettig C.J., Joyce L.A., Keane R.E., Luce C.H., Prestemon J.P., Band L.E., et al. (eds): Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. Washington DC, U.S. Global Change Research Program: 232–267.
 
Weiner J., Thomas S.C. (2001): The nature of tree growth and the “age-related decline in forest productivity”. Oikos, 94: 374–376. https://doi.org/10.1034/j.1600-0706.2001.940219.x
 
Wigley T.M.L., Briffa K.R., Jones P.D. (1984): On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23: 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
 
Williams A.P., Michaelsen J., Leavitt S.W., Still C.J. (2010): Using tree rings to predict the response of tree growth to climate change in the continental United States during the twenty-first century. Earth Interactions, 14: 1–20. https://doi.org/10.1175/2010EI362.1
 
Zang C., Biondi F. (2015): treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography, 38: 431–436. https://doi.org/10.1111/ecog.01335
 
Zhang T., Huang L., Zhang R., Gao Y., Hu D., Yu S., Jiang S. (2020): The impacts of climatic factors on radial growth patterns at different stem heights in Schrenk spruce (Picea schrenkiana). Trees, 34: 163–175. https://doi.org/10.1007/s00468-019-01908-4
 
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S.W., Semerci A., Cobb N. (2010): A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
 
Babst F., Bodesheim P., Charney N., Friend A.D., Girardin M.P., Klesse S., Moore D.J.P., Seftigen K., Björklund J., Bouriaud O., Dawson A., DeRose R.J., Dietze M.C., Eckes A.H., Enquist B., Frank D.C., Mahecha M.D., Poulter B., Record S., Trouet V., Turton R.H., Zhang Z., Evans M.E.K. (2018): When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197: 1–20. https://doi.org/10.1016/j.quascirev.2018.07.009
 
Biondi F., Qeadan F. (2008): A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment. Tree-Ring Research, 64: 81–96. https://doi.org/10.3959/2008-6.1
 
Briffa K.R. (1999): Interpreting high-resolution proxy climate data – the example of dendroclimatology. In: von Storch H., Navarra A. (eds): Analysis of Climate Variability. Berlin, Springer: 77–94.
 
Bunn A.G. (2008): A dendrochronology program library in R (dplR). Dendrochronologia, 26: 115–124. https://doi.org/10.1016/j.dendro.2008.01.002
 
Bunn A.G., Graumlich L.J., Urban D.L. (2005): Trends in twentieth-century tree growth at high elevations in the Sierra Nevada and White Mountains, USA. The Holocene, 15: 481–488. https://doi.org/10.1191/0959683605hl827rp
 
Cook E.R., Kairiukstis L.A. (1990): Methods of Dendrochronology: Applications in the Environmental Science. Dordrecht, Kluwer Academic Publishers: 394.
 
Dai A., Trenberth K.E., Qian T. (2004): A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5: 1117–1130. https://doi.org/10.1175/JHM-386.1
 
Dolanc C.R., Thorne J.H., Safford H.D. (2013a): Widespread shifts in the demographic structure of subalpine forests in the Sierra Nevada, California, 1934 to 2007. Global Ecology and Biogeography, 22: 264–276. https://doi.org/10.1111/j.1466-8238.2011.00748.x
 
Dolanc C.R., Westfall R.D., Safford H.D., Thorne J.H., Schwartz M.W. (2013b): Growth-climate relationships for six subalpine tree species in a Mediterranean climate. Canadian Journal of Forest Research, 43: 1114–1126. https://doi.org/10.1139/cjfr-2013-0196
 
Dolanc C.R., Safford H.D., Thorne J.H., Dobrowski S.Z. (2014): Changing forest structure across the landscape of the Sierra Nevada, CA, USA, since the 1930s. Ecosphere, 5: 1–26. https://doi.org/10.1890/ES14-00103.1
 
Ettl G.J., Peterson D.L. (1995): Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Global Change Biology, 1: 213–230. https://doi.org/10.1111/j.1365-2486.1995.tb00023.x
 
Fites-Kaufman J.A., Rundel P., Stephenson N., Weixelman D.A. (2007): Montane and subalpine vegetation of the Sierra Nevada and Cascade Ranges. In: Barbour M., Keeler-Wolf T., Schoenherr A.A. (eds): Terrestrial Vegetation of California. 3rd Ed. Berkley, University of California Press: 456–501.
 
Fritts H.C. (1976): Tree Rings and Climate. London, Academic Press: 567.
 
Granda E., Camarero J.J., Gimeno T.E., Martinez-Fernandez J., Valladares F. (2013): Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. European Journal of Forest Research, 132: 469–480. https://doi.org/10.1007/s10342-013-0687-0
 
Granier A., Reichstein M., Bréda N., Janssens I.A., Falge E., Ciais P., Grünwald T., Aubinet M.,et al. (2007): Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143: 123–145. https://doi.org/10.1016/j.agrformet.2006.12.004
 
Griffin D., Anchukaitis K.J. (2014): How unusual is the 2012–2014 California drought? Geophysical Research Letters, 41: 9017–9023. https://doi.org/10.1002/2014GL062433
 
Holmes R.L. (1983): Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43: 69–75.
 
Hubbert K.R., Graham R.C., Anderson M.A. (2001): Soil and weathered bedrock: Components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal, 65: 1255–1262. https://doi.org/10.2136/sssaj2001.6541255x
 
Jiao L., Jiang Y., Zhang W.-T., Wang M.-C., Zhang L.-N., Zhao S.-D. (2015): Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, northwest China. Trees, 29: 1673–1686. https://doi.org/10.1007/s00468-015-1248-6
 
Jones J. (2015): California’s most significant droughts: Comparing historical and recent conditions. California Department of Water Resources, State of California. Available at: https://cawaterlibrary.net/wp-content/uploads/2017/09/California_Signficant_Droughts_2015.pdf (accessed August 18, 2020).
 
LeBlanc D.C. (1990): Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Canadian Journal of Forest Research, 20: 1399–1407. https://doi.org/10.1139/x90-185
 
LeBlanc D., Terrell M. (2001): Dendroclimatic analyses using Thornthwaite-Mather-type evapotranspiration models: A bridge between dendroecology and forest simulation models. Tree-Ring Research, 57: 55–66.
 
Lebourgeois F. (2000): Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Annals of Forest Science, 57: 155–164. https://doi.org/10.1051/forest:2000166
 
Lebourgeois F., Bréda N., Ulrich E., Granier A. (2005): Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19: 385–401. https://doi.org/10.1007/s00468-004-0397-9
 
Lepley K., Touchan R., Meko D., Shamir E., Graham R., Falk D. (2020): A multi-century Sierra Nevada snowpack reconstruction modeled using upper-elevation coniferous tree rings (California, USA). The Holocene, 30: 1266–1278. https://doi.org/10.1177/0959683620919972
 
Maloney P.E., Eckert A.J., Vogler D.R., Jensen C.E., Delfino Mix A., Neale D.B. (2016): Landscape biology of Western White Pine: Implications for conservation of a widely-distributed five-needle pine at its southern range limit. Forests, 7: 93. https://doi.org/10.3390/f7050093
 
Marqués L., Camarero J.J., Gazol A., Zavala M.A. (2016): Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management, 381: 157–167. https://doi.org/10.1016/j.foreco.2016.09.021
 
Marziliano P.A., Tognetti R., Lombardi F. (2019): Is tree age or tree size reducing height increment in Abies alba Mill. at its southernmost distribution limit? Annals of Forest Science, 76: 17.
 
Meko D.M., Woodhouse C.A. (2005): Tree-ring footprint of joint hydrologic drought in Sacramento and Upper Colorado river basins, western USA. Journal of Hydrology, 308: 196–213. https://doi.org/10.1016/j.jhydrol.2004.11.003
 
Millar C.I., Westfall R.D., Delany D.L., King J.C., Graumlich L.J. (2004): Response of subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and decadal climate variability. Arctic, Antarctic, and Alpine Research, 36: 181–200. https://doi.org/10.1657/1523-0430(2004)036[0181:ROSCIT]2.0.CO;2
 
NIDIS (2020): What is NIDIS? National Integrated Drought Information System,| Drought.gov. Available at: https://www.drought.gov/drought/what-nidis
 
NESDIS (2020): Divisional Data Select. National Environmental Satellite, Data, and Information Service Available at: https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp
 
Palmer W.C. (1965): Meteorological Drought. Washington, U.S. Department of Commerce, Weather Bureau: 68.
 
Peterson D.L. (1998): Climate, limiting factors and environmental change in high-altitude forests of Western North America. In: Beniston M., Innes J.L. (eds): The Impacts of Climate Variability on Forests. Berlin, Heidelberg, Springer-Verlag: 191–208.
 
Peterson D.L., Arbaugh M.J., Robinson L.J., Derderian B.R. (1990): Growth trends of whitebark pine and lodgepole pine in a subalpine Sierra Nevada forest, California, USA. Arctic and Alpine Research, 22: 233–243. https://doi.org/10.2307/1551586
 
Peterson D.W., Peterson D.L., Ettl G.J. (2002): Growth responses of subalpine fir to climatic variability in the Pacific Northwest. Canadian Journal of Forest Research, 32: 1503–1517. https://doi.org/10.1139/x02-072
 
Proutsos N., Tigkas D. (2020): Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere, 11: 554. https://doi.org/10.3390/atmos11060554
 
R Core Team (2020): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/
 
Rathgeber C.B.K., Misson L., Nicault A., Guiot J. (2005): Bioclimatic model of tree radial growth: Application to the French Mediterranean Aleppo pine forests. Trees, 19: 162–176. https://doi.org/10.1007/s00468-004-0378-z
 
Rathgeber C.B.K., Cuny H.E., Fonti P. (2016): Biological basis of tree-ring formation: A crash course. Frontiers in Plant Science, 7: 734. https://doi.org/10.3389/fpls.2016.00734
 
Salzer M.W., Hughes M.K., Bunn A.G., Kipfmueller K.F. (2009): Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences, 106: 20348–20353. https://doi.org/10.1073/pnas.0903029106
 
Schladow S.G. (2018): Tahoe: State of the Lake Report. Available at: https://tahoe.ucdavis.edu/sites/g/files/dgvnsk4286/files/inline-files/SOTL_Complete_reduced_1.pdf
 
Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. (1990): Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 9–38.
 
Seiler R., Kirchner J.W., Krusic P.J., Tognetti R., Houlie N., Andronico D., Cullotta S., Egli M., D'Arrigo R., Cherubini P. (2017): Insensitivity of tree-ring growth to temperature and precipitation sharpens the puzzle of enhanced pre-eruption NDVI on Mt. Etna (Italy). PLoS ONE, 12: e0169297. https://doi.org/10.1371/journal.pone.0169297
 
Speer J.H. (2010): Fundamentals of Tree-ring Research. Tucson, University of Arizona Press: 333.
 
Taylor A.H., Vandervlugt A.M., Maxwell R.S., Beaty R.M., Airey C., Skinner C.N. (2014): Changes in forest structure, fuels and potential fire behaviour since 1873 in the Lake Tahoe Basin, USA. Applied Vegetation Science, 17: 17–31. https://doi.org/10.1111/avsc.12049
 
van der Maaten-Theunissen M., van der Maaten E., Bouriaud O. (2015): pointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia, 35: 34–38. https://doi.org/10.1016/j.dendro.2015.05.006
 
Van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.F., Fulé P.Z., Harmon M.E., Larson A.J., Smith J.M., Taylor A.H., Veblen T.T. (2009): Widespread increase of tree mortality rates in the western United States. Science, 323: 521–524. https://doi.org/10.1126/science.1165000
 
Vose J.M., Peterson D.L., Domke G.M., Fettig C.J., Joyce L.A., Keane R.E., Luce C.H., Prestemon J.P., Band L.E., et al. (eds): Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. Washington DC, U.S. Global Change Research Program: 232–267.
 
Weiner J., Thomas S.C. (2001): The nature of tree growth and the “age-related decline in forest productivity”. Oikos, 94: 374–376. https://doi.org/10.1034/j.1600-0706.2001.940219.x
 
Wigley T.M.L., Briffa K.R., Jones P.D. (1984): On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology, 23: 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
 
Williams A.P., Michaelsen J., Leavitt S.W., Still C.J. (2010): Using tree rings to predict the response of tree growth to climate change in the continental United States during the twenty-first century. Earth Interactions, 14: 1–20. https://doi.org/10.1175/2010EI362.1
 
Zang C., Biondi F. (2015): treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography, 38: 431–436. https://doi.org/10.1111/ecog.01335
 
Zhang T., Huang L., Zhang R., Gao Y., Hu D., Yu S., Jiang S. (2020): The impacts of climatic factors on radial growth patterns at different stem heights in Schrenk spruce (Picea schrenkiana). Trees, 34: 163–175. https://doi.org/10.1007/s00468-019-01908-4
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti