Mechanized tree planting in Nordic forestry: simulating a machine concept for continuously advancing site preparation and planting

https://doi.org/10.17221/203/2020-JFSCitation:

Manner J., Ersson B.T. (2021): Mechanized tree planting in Nordic forestry: simulating a machine concept for continuously advancing site preparation and planting. J. For. Sci, 67: 242–246.

download PDF

As labour for manual tree planting becomes scarcer, regeneration costs are steadily increasing in Nordic forestry. Today’s intermittently advancing tree planting machines provide excellent silvicultural results, but are expensive to operate because of poor productivity. In contrast, continuously advancing planting machines, thanks to high productivities, are increasingly being regarded as a solution to these runaway regeneration costs. The Silva Nova was a historical, continuously advancing tree planting machine with high productivity. However, Silva Nova’s weaknesses included high labour costs (it required two operators) and the random nature of how it chose planting spots. In contrast, SuperSilva, a purely conceptual modernisation of Silva Nova, involves both automation and microsite identification to make the machine more efficient. We used discrete-event simulation to analyse the stocking rate and spatial distribution of tree planting with SuperSilva. The simulation results showed that introducing sensors for identifying suitable microsites will allow continuously advancing planting machines (like SuperSilva) to plant seedlings in a numerically and spatially adequate manner on moraine soils. Hence, these sensors will increase the competitiveness and versatility of tree planting machines. Unfortunately, such reliable and robust sensor technology (unaffected by a wide variety of operating conditions) is not yet commercially available.

References:
Andersson P.-O., Berglund H., Bäckström P.-O. (1977): Simulering av maskinella planteringsorgans arbete. Redogörelse nr  7. Kista, Forskningsstiftelsen Skogsarbeten: 28. (in Swedish)
 
Bjurulf A., Westerberg D. (1992): Alternativa förband: utred-ning av prestationer, kostnader och konsekvenser. Uppsala, Skogforsk: 21. (in Swedish)
 
Davidsson A. (2002): Utvärdering av granplantering i rektangelförband jämfört med kvadratförband. [MSc. Thesis.]. Umeå, Swedish University of Agricultural Sciences: 22. (in Swedish)
 
Ersson B.T. (2010): Possible Concepts for Mechanized Tree Planting in Southern Sweden – An Introductory Essay on Forest Technology. Arbetsrapport 269. Umeå, Swedish University of Agricultural Sciences: 51.
 
Ersson B.T. (2014): Concepts for Mechanized Tree Planting in Southern Sweden. [PhD. Thesis.] Umeå, Swedish University of Agricultural Sciences: 78.
 
Ersson B.T., Cormier D., St-Amour M., Guay J. (2017): The impact of disc settings and slash characteristics on the Bracke three-row disc trencher’s performance. International Journal of Forest Engineering, 28: 1–9. https://doi.org/10.1080/14942119.2017.1272286
 
Ersson B.T., Laine T., Saksa T. (2018): Mechanized tree planting in Sweden and Finland: current state and key factors for future growth. Forests, 9: 370. https://doi.org/10.3390/f9070370
 
Hallonborg U., von Hofsten H., Mattson S., Hagberg J., Thorsén Å., Nyström C., Arvidsson H. (1995): Maskinell plantering med Silva Nova: nuvarande status samt utvecklingsmöjligheter i jämförelse med manuell plantering. Redogörelse nr 6. Uppsala, Skogforsk: 96. (in Swedish)
 
Hallongren H., Laine T., Rantala J., Saarinen V.-M., Strandström M., Hämäläinen J., Poikela A. (2014): Competitiveness of mechanized tree planting in Finland. Scandinavian Journal of Forest Research, 29: 144–151. https://doi.org/10.1080/02827581.2014.881542
 
Jonsson M., Bengtsson J., Gamfeldt L., Moen J., Snäll T. (2019): Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Nature Plants, 5: 141–147. https://doi.org/10.1038/s41477-018-0346-z
 
Krekula B., Bergqvist J., Fries C., Gällerspång J., Reisek J., Ringagård J., Sollander E., Svensson L., Wågström K. (2018): Föreskrifter för anläggning av skog. Rapport 2018/13. Jönköping, Luleå, Skogsstyrelsen: 161. (in Swedish)
 
Larsson T. (1976): Blockförekomst i skogsmark. Ekonomi nr 4. Kista, Forskningsstiftelsen Skogsarbeten: 2. (in Swedish)
 
Lindholm E.-L., Berg S. (2005): Energy use in Swedish forestry in 1972 and 1997. International Journal of Forest Engineering, 16: 27–37. https://doi.org/10.1080/14942119.2005.10702505
 
Lundqvist L., Elfving B. (2010): Influence of biomechanics and growing space on tree growth in young Pinus sylvestris stands. Forest Ecology and Management, 260: 2143–2147. https://doi.org/10.1016/j.foreco.2010.09.006
 
Ramantswana M., Guerra S.P.S., Ersson B.T. (2020): Advances in the mechanization of regenerating plantation forests: A review. Current Forestry Reports, 6: 143–158. https://doi.org/10.1007/s40725-020-00114-7
 
Rantala J., Harstela P., Saarinen V.-M., Tervo L. (2009): A techno-economic evaluation of Bracke and M-Planter tree planting devices. Silva Fennica, 43: 659–667. https://doi.org/10.14214/sf.186
 
Ringdahl O., Lindroos O., Hellström T., Bergström D., Athanassiadis D., Nordfjell T. (2011): Path tracking in forest terrain by an autonomous forwarder. Scandinavian Journal of Forest Research, 26: 350–359. https://doi.org/10.1080/02827581.2011.566889
 
Salminen H., Varmola M. (1993): Influence of initial spacing and planting design on the development of young Scots pine (Pinus sylvestris L.) stands. Silva Fennica, 27: 21–28. https://doi.org/10.14214/sf.a15656
 
von Hofsten H. (1993): Hög kvalitet även på högkvaliteten med Öje-Planter. Resultat nr 3. Uppsala, Skogforsk: 4. (in Swedish).
 
Wallertz K., Björklund N., Hjelm K., Petersson M., Sundblad L.-G. (2018): Comparison of different site preparation techniques: quality of planting spots, seedling growth and pine weevil damage. New Forests, 49: 705–722. https://doi.org/10.1007/s11056-018-9634-8
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti