Picea abies provenance test in the Czech Republic after 36 years – Central European provenances

https://doi.org/10.17221/23/2015-JFSCitation:Ulbrichová I., Podrázský V., Beran F., Zahradník D., Fulín M., Procházka J., Kubeček J. (2015): Picea abies provenance test in the Czech Republic after 36 years – Central European provenances. J. For. Sci., 61: 465-477.
download PDF
Norway spruce (Picea abies [L.] Karst.) provenances from Central Europe (Hercynian-Sudetes area) were evaluated in a long-term experimental project (Germany-Czech Republic) 36 years after the outplanting. The growth characteristics, mortality and qualitative morphological characteristics of 64 spruce provenances were evaluated on the experimental plot Ledeč-Zaháj, in the Czech-Moravian Highland region of the Czech Republic, in typical conditions for Norway spruce cultivation. Results show 15–20% differences in height and radial growth between provenances and insignificant differences in qualitative characteristics e.g. stem shape, branch density and shape and also health state. Environmental variables that significantly influenced production characteristics include longitude, latitude and altitude of the original locations of the provenances, while average annual temperature and average annual precipitation were not significant. Given conditions of the experimental plot, optimal production occurred with those provenances originally from 49–51 N latitude and 13–20 E longitude. 
References:
Beaulieu Jean, Rainville André (2005): Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81, 704-709  https://doi.org/10.5558/tfc81704-5
 
Beran F. et al. (1997): Periodic Research Report. Strnady, Forestry and Game Management research Institute: unpaginated.
 
Beuker Egbert, Valtonen Esko, Repo Tapani (1998): Seasonal variation in the frost hardiness of Scots pine and Norway spruce in old provenance experiments in Finland. Forest Ecology and Management, 107, 87-98  https://doi.org/10.1016/S0378-1127(97)00344-7
 
Boden Simon, Kahle Hans-Peter, Wilpert Klaus von, Spiecker Heinrich (2014): Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. Forest Ecology and Management, 315, 12-21  https://doi.org/10.1016/j.foreco.2013.12.015
 
Chałupka W., Mejnartowicz L., Lewandowski A. (2008): Reconstitution of a lost forest tree population: A case study of Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 255, 2103-2108  https://doi.org/10.1016/j.foreco.2007.12.014
 
Chmura Daniel J. (2006): Phenology Differs among Norway Spruce Populations in Relation to Local Variation in Altitude of Maternal Stands in the Beskidy Mountains. New Forests, 32, 21-31  https://doi.org/10.1007/s11056-005-3390-2
 
M�ty�s Csaba (1996): Climatic adaptation of trees: rediscovering provenance tests. Euphytica, 92, 45-54  https://doi.org/10.1007/BF00022827
 
Dietrichson J., Christopher C., Coles J.F., de Jamblinne A., Krutzsch P., König A., Lines R., Magnesen S., Nanson A., Vinš B. (1976): The IUFRO provenance experiment of 1964–1968 on Norway spruce (Picea abies (L.) Karst.). In: IUFRO Oslo Congress handout duplicated by the Norwegian Forest Research Institute. Oslo, June 20–
 
July 2, 1976: 14.
 
Dering M., Lewandowski A. (2009): Finding the meeting zone: Where have the northern and southern ranges of Norway spruce overlapped? Forest Ecology and Management, 259: 229–235.
 
Geburek T., Robitschek K., Milasowszky N. (2008): A tree of many faces: Why are there different crown types in Norway spruce (Picea abies)? Flora, 203: 126–133.
 
Giertych M. (2001): The 1964/68 IUFRO inventory provenance test of Norway spruce. In: Balut S., Sabor J. (eds): Inventory Provenance Test of Norway Spruce. IPTNS-IUFRO 1964/68 in Krynica. Krakow, AR: 7–10.
 
Goncharenko G.G., Zadeika I.V., Birgelis J.J. (1995): Genetic structure, diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in natural populations of Latvia. Forest Ecology and Management, 72, 31-38  https://doi.org/10.1016/0378-1127(94)03447-5
 
Gömöry Dušan, Longauer Roman, Hlásny Tomáš, Pacalaj Marián, Strmeň Slavomír, Krajmerová Diana (2012): Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131, 401-411  https://doi.org/10.1007/s10342-011-0512-6
 
Gömöry D., Foffová P., Kmet J., Longauer R., Romšáková I. (2010): Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation? Acta Biologica Cracoviensia Series Botanica, 52: 42–49.
 
Hamerník J., Musil I. (2008): Jehličnaté dřeviny. Praha, Academia: 352.
 
Hamrick J.L (2004): Response of forest trees to global environmental changes. Forest Ecology and Management, 197, 323-335  https://doi.org/10.1016/j.foreco.2004.05.023
 
Johnsen Ø., Daehlen O.G., Østreng G., Skrøppa T. (2005a): Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytologist, 168: 589–596.
 
Johnsen Ø., Fossdal C.G., Nagy N.E., Mølmann J., Dæhlen O.G., Skrøppa T. (2005b): Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant, Cell and Environment, 28: 1090–1102.
 
Kapeller Stefan, Lexer Manfred J., Geburek Thomas, Hiebl Johann, Schueler Silvio (2012): Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271, 46-57  https://doi.org/10.1016/j.foreco.2012.01.039
 
Krutzsch P. (1992): IUFROs role in coniferous tree improvement – Norway spruce (Picea abies /L./ Karst.). Silvae Genetica, 41: 143–150.
 
Kvaalen H., Johnsen Ø. (2008): Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytologist, 177: 49–59.
 
Levanič Tom, Gričar Jožica, Gagen Mary, Jalkanen Risto, Loader Neil J., McCarroll Danny, Oven Primož, Robertson Iain (2009): The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees, 23, 169-180  https://doi.org/10.1007/s00468-008-0265-0
 
Mäkinen Harri, Nöjd Pekka, Kahle Hans-Peter, Neumann Ulrich, Tveite Björn, Mielikäinen Kari, Röhle Heinz, Spiecker Heinrich (2002): Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171, 243-259  https://doi.org/10.1016/S0378-1127(01)00786-1
 
Mengl M., Geburek T., Schueler S. (209): Geographical pattern of haplotypic variation in Austrian native stands of Picea abies. Dendrobiology, 61: 117–118.
 
Modrzyński Jerzy, Eriksson Gösta (2002): Response of Picea abies populations from elevational transects in the Polish Sudety and Carpathian mountains to simulated drought stress. Forest Ecology and Management, 165, 105-116  https://doi.org/10.1016/S0378-1127(01)00651-X
 
ONeill Gregory A., Hamann Andreas, Wang Tongli (2008): Accounting for population variation improves estimates of the impact of climate change on species growth and distribution. Journal of Applied Ecology, 45, 1040-1049  https://doi.org/10.1111/j.1365-2664.2008.01472.x
 
Oleksyn J., Modrzynski J., Tjoelker M. G., Z.ytkowiak R., Reich P. B., Karolewski P. (1998): Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 12, 573-590  https://doi.org/10.1046/j.1365-2435.1998.00236.x
 
Persson B., Persson A. (1997): Variation in stem properties in a IUFRO 1964/1968 Picea abies provenance experiment in southern Sweden. Silvae Genetica, 46: 94–101.
 
R Core Team (2014): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/
 
Rehfeldt G.E., Tchebakova N.M., Milyutin L.I., Parfenova E.I., Wykoff W.R., Kouzmina N.A. (2003): Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate transfer models. Eurasian Journal of Forest Research, 6: 83–98.
 
Repo T. (1992): Seasonal changes of frost hardiness in Piceaabies and Pinussylvestris in Finland. Canadian Journal of Forest Research, 22, 1949-1957  https://doi.org/10.1139/x92-254
 
Romšáková Ivana, Foffová Elena, Kmeť Jaroslav, Longauer Roman, Pacalaj Marian, Gömöry Dušan (2012): Nucleotide polymorphisms related to altitude and physiological traits in contrasting provenances of Norway spruce (Picea abies). Biologia, 67, -  https://doi.org/10.2478/s11756-012-0077-y
 
Sander Constantin, Eckstein Dieter (2001): Foliation of spruce in the Giant Mts. and its coherence with growth and climate over the last 100years. Annals of Forest Science, 58, 155-164  https://doi.org/10.1051/forest:2001115
 
Savva Yuliya, Oleksyn Jacek, Reich Peter B., Tjoelker Mark G., Vaganov Eugene A., Modrzynski Jerzy (2006): Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees, 20, 735-746  https://doi.org/10.1007/s00468-006-0088-9
 
Schiessl Eduard, Grabner Michael, Golesch Gerald, Geburek Thomas, Schueler Silvio (2010): Sub-montane Norway spruce as alternative seed source for a changing climate? A genetic and growth analysis at the fringe of its natural range in Austria. Silva Fennica, 44, -  https://doi.org/10.14214/sf.453
 
Schmidtling R. C. (1994): Use of provenance tests to predict response to climate change: loblolly pine and Norway spruce. Tree Physiology, 14, 805-817  https://doi.org/10.1093/treephys/14.7-8-9.805
 
Skrøppa Tore, Tollefsrud Mari Mette, Sperisen Christoph, Johnsen Øystein (2010): Rapid change in adaptive performance from one generation to the next in Picea abies—Central European trees in a Nordic environment. Tree Genetics & Genomes, 6, 93-99  https://doi.org/10.1007/s11295-009-0231-z
 
Steffenrem Arne, Lindland† Frode, Skr⊘ppa Tore (2008): Genetic and environmental variation of internodal and whorl branch formation in a progeny trial of Picea abies. Scandinavian Journal of Forest Research, 23, 290-298  https://doi.org/10.1080/02827580802249118
 
Šindelář J. (2004): Výzkumné provenienční a jiné šlechtitelské plochy v lesním hospodářství České republiky. Available at http://www.vulhm.cz/sites/File/vydavatelska_cinnost/lesnicky_pruvodce/lp_2004_02.pdf
 
Šercl P. (2008): Hodnocení metod odhadu plošných srážek. Meteorologické zprávy, 61: 33–43.
 
Tolasz R. (eds.) (2007): Atlas podnebí Česka. Praha, Olomouc, ČHMÚ, Univerzita Palackého v Olomouci: 256.
 
Tollefsrud M M, Sønstebø J H, Brochmann C, Johnsen Ø, Skrøppa T, Vendramin G G (): Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity, 102, 549-562  https://doi.org/10.1038/hdy.2009.16
 
Ulbrichová I., Podrázský V., Olmez Z., Beran F., Procházka J., Fulín M., Kubeček J., Zahradník D. (2013): Growth performance of norway spruce in the czech-german provenance trial plot Ledeč. Scientia Agriculturae Bohemica, 44, 223-231  https://doi.org/10.7160/sab.2013.440405
 
WANG T., HAMANN A., YANCHUK A., O'NEILL G. A., AITKEN S. N. (2006): Use of response functions in selecting lodgepole pine populations for future climates. Global Change Biology, 12, 2404-2416  https://doi.org/10.1111/j.1365-2486.2006.01271.x
 
Zubizarreta-Gerendiain Ane, Gort-Oromi Jaume, Mehtätalo Lauri, Peltola Heli, Venäläinen Ari, Pulkkinen Pertti (2012): Effects of cambial age, clone and climatic factors on ring width and ring density in Norway spruce (Picea abies) in southeastern Finland. Forest Ecology and Management, 263, 9-16  https://doi.org/10.1016/j.foreco.2011.09.011
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti