Analyses of periodic annual increment by diameter and volume in differently aged black locust (Robinia pseudoacacia L.) stands: Case study

Ábri T., Rédei K. (2022): Analyses of periodic annual increment by diameter and volume in differently aged black locust (Robinia pseudoacacia L.) stands: Case study. J. For. Sci., 68: 213–219.

download PDF

Black locust is one of the most commonly planted exotic tree species in the world. It has a crucial role in mitigating the negative effects of climate change. Its increment analyses have a key role in forest planning. Increment is added to the wood stock of the forest over and over again, and only this continuous replenishment makes the sustainable forest management possible. This study presents the results of the analysis of periodic annual increment (PAI) by diameter (dbh) and volume (v) of two differently aged black locust (Robinia pseudoacacia L.) stands, growing under similar ecological conditions. The main correlations are as follows: PAIdbh and diameter at breast height: r = 0.601 and 0.704 (P = 0.01); PAIv and mean tree volume (v): r = 0.721 and 0.849 (P = 0.01). The presented correlations clearly demonstrate the importance of individual differentiation within a stand.

Ábri T., Keserű Z., Borovics A., Rédei K., Csajbók J. (2022): Comparison of juvenile, drought tolerant black locust (Robinia pseudoacacia L.) clones with regard to plant physiology and growth characteristics in eastern Hungary: Early evaluation. Forests, 13: 292.
Assmann E. (1961): Waldertragskunde: Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen (Vol. 1). München, BLV Verlagsgesellschaft: 490. (in German)
Avery T.E., Burkhart H.E. (2015): Forest Measurements. 5th Ed. Long Grove, Waveland Press: 456.
Böhm C., Quinkenstein A., Freese D. (2011): Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Annals of Forest Research, 54: 215–227.
Bradley R.T. (1963): Thinning as an instrument of forest management. Forestry: An International Journal of Forest Research, 36: 181–194.
Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., Bailey R.L. (1983): Timber Management: A Quantitative Approach. New York, John Wiley & Sons: 333.
Da Silva R.P., Dos Santos J., Tribuzy E.S., Chambers J.Q., Nakamura S., Higuchi N. (2002): Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management, 166: 295–301.
DeGomez T., Wagner M.R. (2001): Culture and use of black locust. HortTechnology, 11: 279–288.
Enescu C.M., Danescu A. (2013): Black locust (Robinia pseudoacacia L.) – An invasive neophyte in the conventional land reclamation flora in Romania. Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 6: 23.
FAO (2020): Global Forest Resources Assessment 2020 Report – Hungary. Rome, FAO: 57.
Grünewald H., Böhm C., Quinkenstein A., Grundmann P., Eberts J., von Wühlisch G. (2009): Robinia pseudoacacia L.: A lesser known tree species for biomass production. BioEnergy Research, 2: 123–133.
Harrison W.C., Burk T.E., Beck D.E. (1986): Individual tree basal area increment and total height equations for Appalachian mixed hardwoods after thinning. Southern Journal of Applied Forestry, 10: 99–104.
HMS (2022): Hungarian Meteorological Service. Available at: (Accessed Jan 10, 2022).
Járó Z., Lengyel G. (1988): Stand establishment. In: Keresztesi B. (ed.): The Black Locust. Budapest, Akadémiai Kiadó: 87–115.
Keserü Z., Borovics A., Ábri T., Rédei K.M., Lee I.H., Lim H. (2021): Growing of black locust (Robinia pseudoacacia L.) candidate cultivars on arid sandy site. Acta Silvatica et Lignaria Hungarica, 17: 51–61.
Keresztesi B. (1988): The Black Locust. Budapest, Akadémiai Kiadó: 196.
Lange C.A., Knoche D., Hanschke R., Löffler S., Schneck V. (2022): Physiological performance and biomass growth of different black locust origins growing on a post-mining reclamation site in eastern Germany. Forests, 13: 315.
Lorey T. (1878): Die mittlere Bestandeshöhe. Allgemeine Forst- und Jagdzeitung, 54: 149–155. (in German)
Mantovani D., Veste M., Freese D. (2014): Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water–use efficiency. New Zealand Journal of Forestry Science, 44: 29.
Manzone M., Bergante S., Facciotto G. (2015): Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel, 140: 555–560.
Moser A., Rötzer T., Pauleit S., Pretzsch H. (2016): The urban environment can modify drought stress of small–leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.). Forests, 7: 71.
Moser A., Uhl E., Rotzer T., Biber P., Caldentey J.M., Pretzsch H. (2018): Effects of climate and drought events on urban tree growth in Santiago de Chile. Ciencia e Investigación Agraria, 45: 35–50.
Nicolescu V.N., Hernea C., Bakti B., Keserü Z., Antal B., Rédei K. (2018): Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: A review. Journal of Forestry Research, 29: 1449–1463.
Nicolescu V.N., Rédei K., Mason W.L., Vor T., Pöetzelsberger E., Bastien J.C., Brus R., Benčať T., Đodan M., Cvjetkovic B., Andrašev S., La Porta N., Lavnyy V., Mandžukovski D., Petkova K., Roženbergar D., Wąsik R., Mohren G.M.J., Monteverdi M.C., Musch B., Klisz M., Perić S., Keça L., Bartlett D., Hernea C., Pástor M. (2020): Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non native species integrated into European forests. Journal of Forestry Research, 31: 1081–1101.
Quinkenstein A., Freese D., Böhm C., Tsonkova P., Hüttl R.F. (2012): Agroforestry for mine-land reclamation in Germany: Capitalizing on carbon sequestration and bioenergy production. In: Nair P.K.R., Garrity D. (eds): Agroforestry – The Future of Global Land Use. Advances in Agroforestry, Vol 9. Dordrecht, Springer: 313–339.
Rédei K. (1984): Akácosok nevelése. In: Váradi G. (ed.): Fatermesztési Műszaki Irányelvek. IV. Erdőnevelés. Budapest, Agroinform Kiadó: 26–29. (in Hungarian)
Rédei K., Ábri T. (2021): Increment analysis in black locust (Robinia pseudoacacia L.) stand – A case study. International Journal of Horticultural Science, 27: 106–109.
Rédei K., Csiha I., Keserü Z. (2011): Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silvatica et Lignaria Hungarica, 7: 125–132.
Rédei K., Csiha I., Keserü Z., Gál J. (2012): Influence of regeneration method on the yield and stem quality of black locust (Robinia pseudoacacia L.) stands: A case study. Acta Silvatica et Lignaria Hungarica, 8: 103–111.
Rédei K., Keserü Z., Csiha I., Rásó J., Kamandiné Végh Á., Antal B. (2013): Juvenile growth and morphological traits of micropropagated black locust (Robinia pseudoacacia L.) clones under arid site conditions. Acta Silvatica et Lignaria Hungarica, 9: 35–42.
Rédei K., Keserü Z., Csiha I., Rásó J., Honfy V. (2017): Plantation silviculture of black locust (Robinia pseudoacacia L.) cultivars in Hungary – A review. South-East European Forestry: SEEFOR, 8: 151–156.
Sádlo J., Vítková M., Pergl J., Pyšek P. (2017): Towards site-specific management of invasive alien trees based on the assessment of their impacts: The case of Robinia pseudoacacia. NeoBiota, 35: 1–34.
Savill P., Evans J., Auclair D., Falck J. (1997): Plantation Silviculture in Europe. Oxford, Oxford University Press: 308.
Schuler T.M., Thomas-Van Gundy M., Brown J.P., Wiedenbeck J.K. (2017): Managing Appalachian hardwood stands using four management practices: 60-year results. Forest Ecology and Management, 387: 3–11.
Seo Y.W., Balekoglu S., Choi J.K. (2014): Growth pattern analysis by stem analysis of Korean white pine (Pinus koraiensis) in the central northern region of Korea. Forest science and Technology, 10: 220–226.
Silva J.N.M., De Carvalho J.O.P., de C.A. Lopes J., De Oliveira R.P., De Oliveira L.C. (1996): Growth and yield studies in the Tapajós region, Central Brazilian Amazon. The Commonwealth Forestry Review, 75: 325–329.
Sopp L., Kolozs L. (2013): Fatömegszámítási táblázatok. 4th Ed. Budapest, National Food Chain Safety Office, State Forest Service: 280. (in Hungarian)
Van Laar A., Akça A. (2007): Forest Mensuration. 2nd Ed. Dordrecht, Springer: 385.
Vítková M., Kolbek J. (2010): Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40: 205–241.
Vítková M., Tonika J., Müllerová J. (2015): Black locust – Successful invader of a wide range of soil conditions. Science of the Total Environment, 505: 315–328.
Vítková M., Müllerová J., Sádlo J., Pergl J., Pyšek P. (2017): Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384: 287–302.
Zhang G.J., Li Y., Xu Z.H., Jiang J.Z., Han F.B., Liu J.H. (2012): The chemical composition and ruminal degradation of the protein and fibre of tetraploid Robinia pseudoacacia harvested at different growth stages. Journal of Animal and Feed Sciences, 21: 177–187.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti