Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopyČerňava J., Tuček J., Koreň M., Mokroš M. (2017): Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopy. J. For. Sci., 63: 433-441.
download PDF
Mobile laser scanning (MLS) is time-efficient technology of geospatial data collection that proved its ability to provide accurate measurements in many fields. Mobile innovation of the terrestrial laser scanning has a potential to collect forest inventory data on a tree level from large plots in a short time. Valuable data, collected using mobile mapping system (MMS), becomes very difficult to process when Global Navigation Satellite System (GNSS) outages become too long. A heavy forest canopy blocking the GNSS signal and limited accessibility can make mobile mapping very difficult. This paper presents processing of data collected by MMS under a heavy forest canopy. DBH was estimated from MLS point cloud using three different methods. Root mean squared error varied between 2.65 and 5.57 cm. Our research resulted in verification of the influence of MLS coverage of tree stem on the accuracy of DBH data.
American Society for Photogrammetry and Remote Sensing Board (2008): LAS specification. Version 1.2. Available at
Boavida J., Oliveira A., Santos B. (2012): Precise tunnel survey using the RIEGL VMX-250 mobile laser scanning system. In: Licari S. (ed.): RIEGL Lidar 2012, Orlando, Feb 27–Mar 1, 2012: 1–13.
Čerňava J. (2015): Zisťovanie dendrometrických veličín pomocou údajov z mobilného mapovacieho systému. Acta Facultatis Forestalis Zvolen, 57: 161–171.
Forsman Mona, Holmgren Johan, Olofsson Kenneth (2016): Tree Stem Diameter Estimation from Mobile Laser Scanning Using Line-Wise Intensity-Based Clustering. Forests, 7, 206-
Gillet J., Scherzinger B.M., Lithopoulos E. (2000): Inertial/GPS system for seismic survey. In: Liner L.C. (ed.): Proceedings of Society of Exploration Geophysicists, Calgary, June 4–7: 1–9.
Holopainen Markus, Vastaranta Mikko, Hyyppä Juha (2014): Outlook for the Next Generation’s Precision Forestry in Finland. Forests, 5, 1682-1694
Holopainen M., Kankare V., Vastaranta M., Liang X., Lin Y., Vaajac M., Yu X., Hyyppä J., Hyyppä H., Kaartinen H., Kukko A., Tanhuanpääa T., Alho P. (2013): Tree mapping using airborne, terrestrial and mobile laser scanning – a case study in a heterogeneous urban forest. Urban Forestry & Urban Greening, 12: 546–553.
Kelbe David, van Aardt Jan, Romanczyk Paul, van Leeuwen Martin, Cawse-Nicholson Kerry (2015): Single-Scan Stem Reconstruction Using Low-Resolution Terrestrial Laser Scanner Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3414-3427
Xinlian Liang , Hyyppa Juha, Kukko Antero, Kaartinen Harri, Jaakkola Anttoni, Xiaowei Yu (2014): The Use of a Mobile Laser Scanning System for Mapping Large Forest Plots. IEEE Geoscience and Remote Sensing Letters, 11, 1504-1508
Liang Xinlian, Kankare Ville, Hyyppä Juha, Wang Yunsheng, Kukko Antero, Haggrén Henrik, Yu Xiaowei, Kaartinen Harri, Jaakkola Anttoni, Guan Fengying, Holopainen Markus, Vastaranta Mikko (2016): Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77
Mandlburger G., Otepka J., Karel W., Wagner W., Pfeifer N. (2009): Orientation and processing of airborne laser scanning data (OPALS) – concept and first results of a comprehensive ALS software. The International Archives of the Photo-grammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-3/W8: 55–60.
Pfeifer N., Mandlburger G., Otepka J., Karel W. (2014): OPALS – A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, 125-136
Rasinmäki Jussi, Melkas Timo (2006): A method for estimating tree composition and volume using harvester data. Scandinavian Journal of Forest Research, 20, 85-95
Reutebuch S.E., Carson W.W., Ahmed K.M. (2003): A test of the Applanix POS LS inertial positioning system for the collection of terrestrial coordinates under a heavy forest canopy. In: Haukaas J., O’Shea M. (eds): Precision Forestry. Proceedings of the 2nd International Precision Forestry Symposium, Seattle, June 15–17, 2003: 21–28.
Rönnholm P., Liang X., Kukko A., Jaakkola A., Hyyppä J. (2016): QUALITY ANALYSIS AND CORRECTION OF MOBILE BACKPACK LASER SCANNING DATA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-1, 41-47
Schnabel R., Wahl R., Klein R. (2007): Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum, 26, 214-226
Tang Jian, Chen Yuwei, Kukko Antero, Kaartinen Harri, Jaakkola Anttoni, Khoramshahi Ehsan, Hakala Teemu, Hyyppä Juha, Holopainen Markus, Hyyppä Hannu (2015): SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR. Forests, 6, 4588-4606
Wang Di, Hollaus Markus, Puttonen Eetu, Pfeifer Norbert (2016): Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests. Remote Sensing, 8, 974-
Wu Bin, Yu Bailang, Yue Wenhui, Shu Song, Tan Wenqi, Hu Chunling, Huang Yan, Wu Jianping, Liu Hongxing (2013): A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data. Remote Sensing, 5, 584-611
You Lei, Tang Shouzheng, Song Xinyu, Lei Yuancai, Zang Hao, Lou Minghua, Zhuang Chongyang (2016): Precise Measurement of Stem Diameter by Simulating the Path of Diameter Tape from Terrestrial Laser Scanning Data. Remote Sensing, 8, 717-
download PDF

© 2020 Czech Academy of Agricultural Sciences