Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data

https://doi.org/10.17221/28/2020-JFSCitation:

Lovynska V., Buchavyi Yu., Lakyda P., Sytnyk S., Gritzan Yu., Sendziuk R. (2020): Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data. J. For. Sci., 66: 339–348.

download PDF

The present study offers the results of the spectral characteristics, calculated vegetative indices and biophysical parameters of pine stands of the Northern Steppe of Ukraine region obtained using Sentinel-2 data. For the development of regression models with the prediction of the biomass of pine forests using the obtained spectral characteristics, we used the results of the assessment of the aboveground biomass by the method of field surveys. The results revealed the highest correlation relations between the parameters of the general and trunk biomass with the normalised difference vegetation index (NDVI) and transformed vegetation index (TVI) vegetative indices and the fraction of absorbed photosynthetic active radiation (FARAP) and fraction of vegetation cover (FCOVER) biophysical parameters. To generate the models of determining the forest aboveground biomass (AGB), we used both the single- and two-factor models, the most optimum of which were those containing the NDVI predictor separately and in combination with the FCOVER predictor. The predicted values of the total AGB for the mentioned models equalled 32.5 to 236.3 and 39.9 to 253.4 t·ha–1. We performed mapping of the AGB of pine stands of the Northern Steppe using multi-spectral Sentinel-2 images, particularly the spectral characteristics of their derivatives (vegetative indices, biophysical parameters). This study demonstrated promising results for conducting an AGB-mapping of pine woods in the studied region using free-access resources.

References:
Castillo J.A.A., Apan A.A., Maraseni T.N., Salmo S.G. (2017): Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. Journal of Photogrammetry and Remote Sensing, 134: 70–85.  https://doi.org/10.1016/j.isprsjprs.2017.10.016
 
Chen L., Wang Y., Ren C., Zhang B., Wang Z. (2019): Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. Forest Ecology and Management, 447: 12–25.  https://doi.org/10.1016/j.foreco.2019.05.057
 
Chrysafis I., Mallinis G., Siachalou S., Patias P. (2017): Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters, 8: 508–517.  https://doi.org/10.1080/2150704X.2017.1295479
 
Dang A.T.N., Nandy S., Srinet R., Luong N.V., Ghosh S., Senthil Kumar A. (2019): Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50: 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010
 
Foody G.M., Cutler M.E., McMorrow J., Pelz D., Tangki H., Boyd D.S., Douglas I. (2001): Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10: 379–387.  https://doi.org/10.1046/j.1466-822X.2001.00248.x
 
Foodya G.M., Boydb D.S., Cutler M.E.J. (2003): Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85: 463–474. https://doi.org/10.1016/S0034-4257(03)00039-7
 
Gallaun H., Zanchi G., Nabuurs G.J., Hengeveld G., Schardt M., Verkerk P.J. (2010): EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management, 260: 252–61.  https://doi.org/10.1016/j.foreco.2009.10.011
 
Ghosh S.M., Behera M.D. (2018): Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96: 29–40.  https://doi.org/10.1016/j.apgeog.2018.05.011
 
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Townshend J.R.G. (2013): High-resolution global maps of 21st-century forest cover change. Science, 342: 850–853.  https://doi.org/10.1126/science.1244693
 
Hazarika M.K., Yasuoka Y., Ito A., Dye D. (2005): Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sensing of Environment, 94: 298–310.  https://doi.org/10.1016/j.rse.2004.10.004
 
Houghton R., Butman D., Bunn A.G., Krankina O., Schlesinger P., Stone T. (2007): Mapping Russian forest biomass with data from satellites and forest inventories. Environmental Research Letters, 2: 045032. https://doi.org/10.1088/1748-9326/2/4/045032
 
Hulchak V.P., Kravchuk M.F., Dudynets A.Y. (2011): Principles of forest management and development in Dnipropetrovsk region. Irpin: 129. (in Ukrainian)
 
Lambert M.C., Ung C.H., Raulier F. (2005): Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35: 1996–2018. https://doi.org/10.1139/x05-112
 
le Maire G., François C., Soudani K., Berveiller D., Pontailler J.Y., Bréda N., Genet H., Davi H., Dufrene E. (2008): Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sensing of Environment, 112: 3846–3864.
 
Liu Y.Y., van Dijk A.I.J.M., de Jeu R.A.M., Canadell J.G., McCabe M.F., Evans J.P., Wang G. (2015): Recent reversal in loss of global terrestrial biomass. Nature Climate Change, 5: 470–474.  https://doi.org/10.1038/nclimate2581
 
Lovynska V., Lakyda P., Sytnyk S., Lakyda I., Gritzan Y., Hetmanchuk A. (2019): Stem production of Scots pine and black locust stands in Ukraine’s Northern Steppe. Journal of Forest Science, 65: 461–471. https://doi.org/10.17221/92/2019-JFS
 
Madugundu R., Nizalapur V., Shekhar C.J. (2008): Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10: 211–219. https://doi.org/10.1016/j.jag.2007.11.004
 
Mcmorrow J., Pelz D., Boyd D.S. (2001): Mapping the biomass of Borneal tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10: 379–387. https://doi.org/10.1046/j.1466-822X.2001.00248.x
 
Mganga N.D., Lyaruu H.V.M. (2015): Applicability of satellite remote sensing in accounting aboveground carbon in Miombo Woodlands. International Journal of Advanced Remote Sensing and GIS, 4: 1334–1343. https://doi.org/10.23953/cloud.ijarsg.121
 
Mohd Zaki N. A., Abd Latif Z. (2016): Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling. Geocarto International, 32: 701–716.  https://doi.org/10.1080/10106049.2016.1178814
 
Muukkonen P. (2007): Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126: 157–166. https://doi.org/10.1007/s10342-007-0168-4
 
Muukkonen P. (2007): Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126: 157–66.  https://doi.org/10.1007/s10342-007-0168-4
 
Navarro J.A., Algeet N., Fernández-Landa A., Esteban, J., Rodríguez-Noriega P., Guillén-Climent M.L. (2019): Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote Sensing, 11: 77.  https://doi.org/10.3390/rs11010077
 
Nemani R.R., Keeling C.D., Hashimoto H., Jolly W.M., Piper S.C., Tucker C.J., Myneni R.B., Running S.W. (2003): Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1996. Science, 300: 1559–1563. https://doi.org/10.1126/science.1082750
 
Potter C.S., Randerson J.T., Field C.B., Matson P.A., Vitousek P.M., Mooney H.A., Klooster S.A. (1993): Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7: 811–841.  https://doi.org/10.1029/93GB02725
 
Roy P.S., Ravan S.A. (1996): Biomass estimation using satellite remote sensing data. An investigation on possible approaches for natural forest. Journal of Biosciences, 21: 535–561.  https://doi.org/10.1007/BF02703218
 
Santoro M., Beer C., Cartus O., Schmullius C., Shvidenko A., McCallum I., Wiesmann A. (2011): Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sensing of Environment, 115: 490–507.  https://doi.org/10.1016/j.rse.2010.09.018
 
Schimel D.S. (1995): Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1: 77–91.  https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
 
Shvidenko A., Schepaschenko D., Nilsson S., Bouloui Y. (2007): Semiempirical models for assessing biological productivity of northern Eurasian forests. Ecological Modelling, 204: 163–79.  https://doi.org/10.1016/j.ecolmodel.2006.12.040
 
Sibanda M., Mutanga O., Rouget M. (2015): Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS Journal Photogrammetry and Remote Sensing, 110: 55–65. https://doi.org/10.1016/j.isprsjprs.2015.10.005
 
Swatantran A., Dubayah R., Roberts D., Hofton M., Blair J.B. (2011): Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sensing of Environment, 115: 2917–2930.  https://doi.org/10.1016/j.rse.2010.08.027
 
Voronin P.Yu. (2006): Chlorophyll index and photosynthetic carbon stock of Northern Eurasia. Plant Physiology, 53: 77–85. (in Russian) https://doi.org/10.1134/S1021443706050141
 
Zhang X., Kondragunta S. (2006): Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophysical Research Letters, 33: L09402.  https://doi.org/10.1029/2006GL025879
 
Zhou L., Tucker C. J., Kaufmann R.K., Slayback D., Shabanov N.V., Ranga Myneni R.B. (2001): Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of geophysical research, 106: 20069–20083. https://doi.org/10.1029/2000JD000115
 
download PDF

© 2020 Czech Academy of Agricultural Sciences