Phenotypic variability of Fraxinus excelsior L. and Fraxinus angustifolia Vahl under the ash dieback disease in the Czech Republic

https://doi.org/10.17221/30/2018-JFSCitation:Papić S., Buriánek V., Longauer R., Kudláček T., Rozsypálek J. (2018): Phenotypic variability of Fraxinus excelsior L. and Fraxinus angustifolia Vahl under the ash dieback disease in the Czech Republic. J. For. Sci., 64: 279-288.
download PDF

The study was carried out in the experiment with 16 provenances of common ash (Fraxinus excelsior Linnaeus) and 2 provenances of narrow-leaved ash (Fraxinus angustifolia Vahl) at a series of 5 parallel trial plots established in a gradient from lowland riverine to upland ravine sites. The role of the site, ash species and the provenance of common ash proved to have significant effects on the intensity of ash dieback (ADB) associated with the infection by Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz & Hosoya at the age of 20 years. Narrow-leaved ash was healthier, surviving and growing better than common ash on the trials situated inside as well as beyond its natural range. The ADB intensity was lower in the medium altitude and more easterly located trial plots with a more continental climate. The provenance of forest reproductive material proved to have a significant effect on the ADB damage and survival rate as well as the growth of ash across the trial plots of the experiment.

References:
Buriánek V. (2000): Provenienční výzkum jasanu v ČR. Zprávy lesnického výzkumu, 45: 1–9.
 
Václav Buriánek, Petr Novotný, Jaroslav Dostál (2017): Results of Czech ash provenance experiment. Journal of Forest Science, 63, 263-274 https://doi.org/10.17221/11/2017-JFS
 
Conrad Victor (1946): METHODS IN CLIMATOLOGY*. Weather, 1, 84-84 https://doi.org/10.1002/j.1477-8696.1946.tb00041.x
 
Enderle R., Fussi B., Lenz D., Langer G., Nagel R., Metzler B. (2017): Ash dieback in Germany: Research on disease devel-opment, resistance, and management options. In: Vasaitis R., Enderle R. (eds): Dieback of European Ash (Fraxinus spp.) – Consequences and Guidelines for Sustainable Management. The Report on European COST Action FP1103 FRAXBACK. Uppsala, Swedish University of Agricultural Sciences: 89–105.
 
Finlay KW, Wilkinson GN (1963): The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14, 742- https://doi.org/10.1071/AR9630742
 
Gross Andrin, Holdenrieder Ottmar, Pautasso Marco, Queloz Valentin, Sieber Thomas Niklaus (2014): Hymenoscyphus pseudoalbidus , the causal agent of European ash dieback. Molecular Plant Pathology, 15, 5-21 https://doi.org/10.1111/mpp.12073
 
Hauptman T., Ogris N., de Groot M., Piškur B., Jurc D., Cleary M. (2016): Individual resistance of Fraxinus angustifolia clones to ash dieback. Forest Pathology, 46, 269-280 https://doi.org/10.1111/efp.12253
 
Havrdová L., Novotná K., Zahradník D., Buriánek V., Pešková V., Šrůtka P., Černý K., Cleary M. (2016): Differences in susceptibility to ash dieback in Czech provenances of Fraxinus excelsior. Forest Pathology, 46, 281-288 https://doi.org/10.1111/efp.12265
 
Hietala Ari M., Timmermann Volkmar, BØrja Isabella, Solheim Halvor (2013): The invasive ash dieback pathogen Hymenoscyphus pseudoalbidus exerts maximal infection pressure prior to the onset of host leaf senescence. Fungal Ecology, 6, 302-308 https://doi.org/10.1016/j.funeco.2013.03.008
 
Hijmans Robert J., Cameron Susan E., Parra Juan L., Jones Peter G., Jarvis Andy (2005): Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978 https://doi.org/10.1002/joc.1276
 
Jankovský L., Holdenrieder O. (2009): <i>Chalara fraxinea</i> – ash dieback in the Czech Republic. Plant Protection Science, 45, 74-78 https://doi.org/10.17221/45/2008-PPS
 
Kirisits T., Cech T.L. (2009): Beobachtungen zum sexuellen Stadium des Eschentriebsterben-Erregers Chalara fraxinea in Österreich. Forstschutz Aktuell, 48: 21–25.
 
Kirisits T., Matlakova M., Mottinger-Kroupa S., Halmschlager E., Lakatos F. (2010): Chalara fraxinea associated with dieback of narrow-leafed ash ( Fraxinus angustifolia ). Plant Pathology, 59, 411-411 https://doi.org/10.1111/j.1365-3059.2009.02162.x
 
Kjaer Erik Dahl, McKinney Lea Vig, Nielsen Lene Rostgaard, Hansen Lars Nørgaard, Hansen Jon Kehlet (2012): Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evolutionary Applications, 5, 219-228 https://doi.org/10.1111/j.1752-4571.2011.00222.x
 
Kleinschmit J., Svolba J., Enescu V., Franke A., Rau H.M., Ruetz W. (1996): Erste Ergebnisse des Eschen-Herkunftversuches von 1982. Forstarchiv, 67: 114–122.
 
Kowalski T. (2006): Chalara fraxinea sp. nov. associated with dieback of ash ( Fraxinus excelsior ) in Poland. Forest Pathology, 36, 264-270 https://doi.org/10.1111/j.1439-0329.2006.00453.x
 
Lenz Heike, Bartha Bernadett, Straßer Ludwig, Lemme Hannes (2016): Development of Ash Dieback in South-Eastern Germany and the Increasing Occurrence of Secondary Pathogens. Forests, 7, 41- https://doi.org/10.3390/f7020041
 
Lobo Albin, Hansen Jon Kehlet, McKinney Lea Vig, Nielsen Lene Rostgaard, Kjær Erik Dahl (2014): Genetic variation in dieback resistance: growth and survival of Fraxinus excelsior under the influence of Hymenoscyphus pseudoalbidus. Scandinavian Journal of Forest Research, 29, 519-526 https://doi.org/10.1080/02827581.2014.950603
 
Lobo A., McKinney L. V., Hansen J. K., Kjaer E. D., Nielsen L. R., Holdenrieder O. (2015): Genetic variation in dieback resistance in Fraxinus excelsior confirmed by progeny inoculation assay. Forest Pathology, 45, 379-387 https://doi.org/10.1111/efp.12179
 
McKinney L. V., Thomsen I. M., Kjaer E. D., Nielsen L. R. (2012): Genetic resistance to Hymenoscyphus pseudoalbidus limits fungal growth and symptom occurrence in Fraxinus excelsior. Forest Pathology, 42, 69-74 https://doi.org/10.1111/j.1439-0329.2011.00725.x
 
McKinney L. V., Nielsen L. R., Collinge D. B., Thomsen I. M., Hansen J. K., Kjaer E. D. (2014): The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathology, 63, 485-499 https://doi.org/10.1111/ppa.12196
 
Pliūra A., Baliuckas V. (2007): Genetic variation in adaptive traits of progenies of Lithuanian and western European pop-ulations of Fraxinus excelsior L. Baltic Forestry, 13: 28–38.
 
Pliūra A., Lygis V., Suchockas V., Bartkevičius E. (2011): Performance of twenty four European Fraxinus excelsior popula-tions in three Lithuanian progeny trials with a special emphasis on resistance to Chalara fraxinea. Baltic Forestry, 17: 17–34.
 
Pliūra A., Marčiulynienė D., Bakys R., Suchockas V. (2014): Dynamics of genetic resistance to Hymenoscyphus pseudoalbidus in juvenile Fraxinus excelsior clones. Baltic Forestry, 20: 10–27.
 
Rozsypálek J. (2015): Infekční biologie Chalara fraxinea a faktory ovlivňující fruktifikaci teleomorfy Hymenoscyphus pseudoalbidus jako zdroje infekce nekrózy jasanu. Brno, Mendel University in Brno: 99.
 
Schwanda K., Kirisits T. (2016): Pathogenicity of Hymenoscyphus fraxineus towards leaves of three European ash species: Fraxinus excelsior , F. angustifolia and F. ornus. Plant Pathology, 65, 1071-1083 https://doi.org/10.1111/ppa.12499
 
Skovsgaard J.P., Thomsen I.M., Barklund P. (2009): Skötsel av bestånd med askskottsjuka. Fakta Skog, 13: 1–4.
 
Skovsgaard J. P., Thomsen I. M., Skovgaard I. M., Martinussen T. (2010): Associations among symptoms of dieback in even-aged stands of ash ( Fraxinus excelsior L.). Forest Pathology, 40, 7-18 https://doi.org/10.1111/j.1439-0329.2009.00599.x
 
Stener Lars-Göran (2013): Clonal differences in susceptibility to the dieback of Fraxinus excelsior in southern Sweden. Scandinavian Journal of Forest Research, 28, 205-216 https://doi.org/10.1080/02827581.2012.735699
 
Úradníček L., Maděra P. (2001): Dřeviny České republiky. Písek, Matice lesnická: 333.
 
Zhao Yan-Jie, Hosoya Tsuyoshi, Baral Hans-Otto, Hosaka Kentaro, Kakishima Makoto (2013): <I>Hymenoscyphus pseudoalbidus</I>, the correct name for <I>Lambertella albida</I> reported from Japan. Mycotaxon, 122, 25-41 https://doi.org/10.5248/122.25
 
download PDF

© 2018 Czech Academy of Agricultural Sciences