Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic
Adame Patricia, del Río Miren, Cañellas Isabel (2008): A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 256, 88-98
https://doi.org/10.1016/j.foreco.2008.04.006
Adamec Z. (2015): Využití moderních regresních metod pro modelování výškové křivky. [Ph.D. Thesis.] Brno, Mendel University in Brno: 214.
Akaike H. (1974): A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723
https://doi.org/10.1109/TAC.1974.1100705
Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of Royal Statistical Society, 42: 1–16.
(1957): Quantitative Laws in Metabolism and Growth. The Quarterly Review of Biology, 32, 217-
https://doi.org/10.1086/401873
Buford M.A. (1986): Height-diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812–818.
Calama Rafael, Montero Gregorio (2004): Interregional nonlinear heightdiameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34, 150-163
https://doi.org/10.1139/x03-199
Castedo Dorado Fernando, Barrio Anta Marcos, Parresol Bernard R., Álvarez González Juan Gabriel (2005): A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Annals of Forest Science, 62, 455-465
https://doi.org/10.1051/forest:2005042
Castedo Dorado Fernando, Diéguez-Aranda Ulises, Barrio Anta Marcos, Sánchez Rodríguez Marina, von Gadow Klaus (2006): A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229, 202-213
https://doi.org/10.1016/j.foreco.2006.04.028
Chapagain Tolak R., Sharma Ram P., Bhandari Shes K. (2014): Modeling above-ground biomass for three tropical tree species at their juvenile stage. Forest Science and Technology, 10, 51-60
https://doi.org/10.1080/21580103.2013.834277
Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H., Bailey R.L. (1983): Timber Management: A Quantitative Approach. New York, John Wiley & Sons, Inc.: 333.
Crecente-Campo Felipe, Tomé Margarida, Soares Paula, Diéguez-Aranda Ulises (2010): A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259, 943-952
https://doi.org/10.1016/j.foreco.2009.11.036
Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second growth Douglas fir. Forest Science, 13: 365–375.
de-Miguel Sergio, Mehtätalo Lauri, Shater Zuheir, Kraid Bassel, Pukkala Timo (2012): Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42, 1383-1394
https://doi.org/10.1139/x2012-090
de Souza Vismara Edgar, Mehtätalo Lauri, Batista João Luis Ferreira (2016): Linear mixed-effects models and calibration applied to volume models in two rotations of
Eucalyptus grandis plantations. Canadian Journal of Forest Research, 46, 132-141
https://doi.org/10.1139/cjfr-2014-0435
Ferguson I.S., Leech J.W. (1978): Generalized least squares estimation of yield functions. Forest Science, 24: 27–42.
FMI (2003): Inventarizace lesů, metodika venkovního sběru dat. Brandýs nad Labem, Forest Management Institute: 136.
Fu Liyong, Sun Hua, Sharma Ram P., Lei Yuancai, Zhang Huiru, Tang Shouzheng (2013): Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. Forest Ecology and Management, 302, 210-220
https://doi.org/10.1016/j.foreco.2013.03.036
Grégoire Timothy G., Schabenberger Oliver, Barrett James P. (1995): Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-pBot measurements. Canadian Journal of Forest Research, 25, 137-156
https://doi.org/10.1139/x95-017
Haglöf Sweden, A.B. (2011): Vertex Laser VL402 User’s Manual. Långsele, Haglöf Sweden, A.B.: 41.
Huang Shongming, Titus Stephen J. (1994): An age-independent individual tree height prediction model for boreal spruce–aspen stands in Alberta. Canadian Journal of Forest Research, 24, 1295-1301
https://doi.org/10.1139/x94-169
Huang Shongming, Price Daryl, J. Titus Stephen (2000): Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management, 129, 125-141
https://doi.org/10.1016/S0378-1127(99)00151-6
HUXLEY J. S., TEISSIER G. (1936): Terminology of Relative Growth. Nature, 137, 780-781
https://doi.org/10.1038/137780b0
IFER (2016): Field-Map Software and Hardware Catalogue. Jílové u Prahy, Institute of Forest Ecosystem Research – Monitoring and Mapping Solutions, Ltd.: 50.
Kangas Annika, Maltamo Matti (2002): Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fennica, 36, -
https://doi.org/10.14214/sf.522
Lappi J. (1997): A longitudinal analysis of height-diameter curves. Forest Science, 43: 555–570.
Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R.D., Schabenberger O. (2006): SAS for Mixed Models. 2nd Ed. Cary, SAS Institute Inc.: 814.
Mehtätalo Lauri (2004): A longitudinal heightdiameter model for Norway spruce in Finland. Canadian Journal of Forest Research, 34, 131-140
https://doi.org/10.1139/x03-207
Mehtätalo Lauri, de-Miguel Sergio, Gregoire Timothy G. (2015): Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 45, 826-837
https://doi.org/10.1139/cjfr-2015-0054
Meng Shawn X., Huang Shongming, Yang Yuqing, Trincado Guillermo, VanderSchaaf Curtis L. (2009): Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Canadian Journal of Forest Research, 39, 1148-1158
https://doi.org/10.1139/X09-039
Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415–420.
Monserud R.A. (1984): Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science, 30: 943–965.
Näslund M. (1936): Skogsforsö ksastaltens gallringsforsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, 29: 1–169.
Newton P.F., Amponsah I.G. (2007): Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247, 149-166
https://doi.org/10.1016/j.foreco.2007.04.029
Paulo Joana Amaral, Tomé José, Tomé Margarida (2011): Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. Annals of Forest Science, 68, 295-309
https://doi.org/10.1007/s13595-011-0041-y
Pinheiro J.C., Bates D.M. (2000): Mixed-effects Models in S and S-PLUS. New York, Springer-Verlag: 527.
Pretzsch H. (2009): Forest Dynamics, Growth and Yield: From Measurement to Model. Berlin, Springer-Verlag: 664.
Robinson Andrew P, Wykoff William R (2004): Imputing missing height measures using a mixed-effects modeling strategy. Canadian Journal of Forest Research, 34, 2492-2500
https://doi.org/10.1139/x04-137
SAS Institute Inc. (2008): SAS/ETS1 9.1.3 User’s Guide. Cary, SAS Institute Inc.: 263.
Schmidt Matthias, Kiviste Andres, Gadow Klaus (2011): A spatially explicit height–diameter model for Scots pine in Estonia. European Journal of Forest Research, 130, 303-315
https://doi.org/10.1007/s10342-010-0434-8
Sharma Mahadev, Parton John (2007): Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249, 187-198
https://doi.org/10.1016/j.foreco.2007.05.006
Sharma Mahadev, Yin Zhang Shu (2004): Height–Diameter Models Using Stand Characteristics for
Pinus banksiana and
Picea mariana. Scandinavian Journal of Forest Research, 19, 442-451
https://doi.org/10.1080/02827580410030163
Sharma Ram P., Breidenbach Johannes (): Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. Forest Science and Technology, 11, 44-53
https://doi.org/10.1080/21580103.2014.957354
Sharma Ram P., Vacek Zdeněk, Vacek Stanislav (2016): Individual tree crown width models for Norway spruce and European beech in Czech Republic. Forest Ecology and Management, 366, 208-220
https://doi.org/10.1016/j.foreco.2016.01.040
Sharma Ram P., Brunner Andreas, Eid Tron, Øyen Bernt-Håvard (2011): Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management, 262, 2162-2175
https://doi.org/10.1016/j.foreco.2011.07.037
(): Subject-Specific Prediction Using a Nonlinear Mixed Model: Consequences of Different Approaches. Forest Science, , -
https://doi.org/10.5849/forsci.13-142
Staudhammer Christie, LeMay Valerie (2000): Height prediction equations using diameter and stand density measures. The Forestry Chronicle, 76, 303-309
https://doi.org/10.5558/tfc76303-2
Temesgen H., v. Gadow K. (2004): Generalized height?diameter models?an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123, 45-51
https://doi.org/10.1007/s10342-004-0020-z
Temesgen H., Zhang C.H., Zhao X.H. (2014): Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316, 78-89
https://doi.org/10.1016/j.foreco.2013.07.035
Trincado Guillermo, VanderSchaaf Curtis L., Burkhart Harold E. (2007): Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research, 126, 253-262
https://doi.org/10.1007/s10342-006-0141-7
van Laar A., Akça A. (2007): Forest Mensuration. Managing Forest Ecosystems. Vol. 13. Dordrecht, Springer-Verlag: 383.
Vanclay J.K. (1994): Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford, CABI: 312.
Vonesh E.F., Chinchilli V.M. (1997): Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York, Marcel Dekker Inc.: 560.
Wykoff W.R., Crookston N.L., Stage A.R. (1982): User’s Guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, USDA Forest Service, Intermountain Forest and Range Experiment Station: 231.
Zeide B., Curtis V. (2002): The effect of density on the height-diameter relationship. In: Outcalt K.W. (ed.): Proceedings of the 11th Biennial Southern Silvicultural Research Conference. General Technical Report SRS-48, Knoxville, Mar 19–22, 2001: 463–466.