Factors affecting the radial growth of Juniperus foetidissima Willd. and J. excelsa M. Bieb. in central Anatolia

https://doi.org/10.17221/42/2021-JFSCitation:

Kahveci G., Arslan M. (2021): Factors affecting the radial growth of Juniperus foetidissima Willd. and J. excelsa M. Bieb. in central Anatolia. J. For. Sci., 67: 477–488.

download PDF

Central Anatolia is one of the semi-arid regions of Turkey that does not offer very suitable conditions for the growth of trees. Tree growth is a process controlled by genetic, environmental and climatic factors. Trees record these signals, which provide valuable scientific data for dendrochronological research. We used raw annual tree-ring width (taken from trees under the age of 100 years) as one of the dendrochronological parameters to compare Juniperus foetidissima and J. excelsa in terms of affecting factors. We compared the annual tree-ring width of both species considering species, locations and research sites of the altitude range of 677–1 400 m a.s.l.. Environmental signals (longitude and latitude, altitude, slope, exposure, human impact and nearest settlement distance), as well as climatic factors (precipitation, temperature, moisture) affecting growth were examined. Results indicate that there is an obvious difference in raw annual tree-ring widths depending on species. J. foetidissima differs from J. excelsa in wider annual tree-ring widths and preferences to a low slope and altitude. While the annual tree-ring width of J. excelsa did not respond to the environmental signals, the annual tree-ring width of J. foetidissima was notably correlated with longitude, latitude, altitude and slope. The most remarkable variables affecting the growth of both species were summer temperatures and moisture.

References:
Aertsen W., Kint V., Van Orshoven J., Özkan K., Muys B. (2010): Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221: 1119–1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
 
Atalay İ., Gökçe Gündüzoğlu H.A. (2015): Türkiye’nin Ekolojik Koşullarına Göre Arazi Kabiliyet Sınıflandırılması. İzmir, Meta Basım Matbaacılık Hizmetleri: 272. (in Turkish)
 
Balkan E., Erkan K., Şalk M. (2017): Thermal conductivity of major rock types in western and central Anatolia regions, Turkey. Journal of Geophysics and Engineering, 14: 909–919. https://doi.org/10.1088/1742-2140/aa5831
 
Barga S.C., Dilts T.E., Leger E.A. (2018): Contrasting climate niches among co-occurring subdominant forbs of the sagebrush steppe. Diversity and Distribution, 24: 1291–1307. https://doi.org/10.1111/ddi.12764
 
Bigler C. (2016): Trade-offs between growth rate, tree size and lifespan of mountain pine (Pinus montana) in the Swiss National Park. Dryad Dataset. PLoS ONE, 11: e0150402. https://doi.org/10.1371/journal.pone.0150402
 
Bond B.J. (2000): Age-related changes in photosynthesis of woody plants. Trends in Plant Science, 5: 349–353. https://doi.org/10.1016/S1360-1385(00)01691-5
 
Carus S. (2004): Increment and growth in Crimean juniper (Juniperus excelsa Bieb.) stands in Isparta-Sütçüler region of Turkey. Journal of Biological Sciences, 4: 173–179. https://doi.org/10.3923/jbs.2004.173.179
 
Çalışkan S., Boydak M. (2017): Afforestation of arid and semiarid ecosystems in Turkey. Turkish Journal of Agriculture and Forestry, 41: 317–330. https://doi.org/10.3906/tar-1702-39
 
Çepel N. (1988): Orman Ekolojisi. İstanbul Üniversitesi Orman Fakültesi Yayınları, İ.Ü. Yayın No: 3518, O.F. Yayın No: 399. İstanbul, Gençlik Basımevi: 536. (in Turkish)
 
Chambers J.C., Vander Wall S.B., Schupp E.W. (1999): Seed and seedling ecology of pinon and juniper species in the pygmy woodlands of western North America. The Botanical Review, 65: 1–38. https://doi.org/10.1007/BF02856556
 
Coley P.D., Bryant J.P., Chapin F.S. (1985): Resource availability and plant antiherbivore defence. Science, 230: 895–899. https://doi.org/10.1126/science.230.4728.895
 
Corcuera L., Camarero J.J., Gil-Pelegrín E. (2004): Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. Iawa Journal, 25: 185–204. https://doi.org/10.1163/22941932-90000360
 
Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek, S. (2019): Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLoS ONE, 14: e0221082.
 
Dinç U., Şenol S., Kapur S., Cangir C., Atalay I. (1997): Soils of Turkey. Adana. University of Çukurova, Faculty of Agriculture: 233. (in Turkish)
 
Douaihy B., Vendramin G.G., Boratyński A., Machon N., Bou Dagher-Kharrat M. (2011): High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants, 2011: plr003. https://doi.org/10.1093/aobpla/plr003
 
Esper J. (2000): Paleoklimatische Untersuchungen an Jahrringen im Karakorum und Tien Shan Gebirge (Zentralasien). Bonner Geographische Abhandlungen, 103: 137. (in German)
 
Esper J., Frank D.C., Wilson R.J.S., Büntgen U., Treydte K. (2007): Uniform growth trends among central Asian low and high elevation juniper tree sites. Trees, 21: 141–150. https://doi.org/10.1007/s00468-006-0104-0
 
Farjon A. (1992): The taxonomy of multiseed junipers (Juniperus Sect. Sabina) in southwest Asia and east Africa (Taxonomic notes on Cupressaceae I). Edinburgh Journal of Botany, 49: 251–283. https://doi.org/10.1017/S0960428600000524
 
General Directorate of Meteorology (GDM) (2016): Available at: https://www.mgm.gov.tr/ (upon request)
 
Güvendiren A.D. (2015): Molecular phylogenetic analyses of Juniperus L. species in Turkey and their relations with other Junipers based on cpDNA. [PhD Thesis.] Ankara, Middle East Technical University.
 
Holmes R.L. (1983): Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bulletin, 43: 69–78.
 
Jiao L., Jiang, Y., Wang M., Zhang W., Zhang, Y. (2017): Age-effect radial growth responses of Picea schrenkiana to climate change in the eastern Tianshan Mountains, northwest China. Forest, 8: 294. https://doi.org/10.3390/f8090294
 
Kahveci G., Alan M., Köse N. (2018): Distribution of juniper stands and the impact of environmental parameters on growth in the drought-stressed forest-steppe zone of Central Anatolia. Dendrobiology, 80: 61–69. https://doi.org/10.12657/denbio.080.006
 
Kasaian J., Behravan J., Hassany M., Emami S.A., Shahriari F., Khayyat M.H. (2011): Molecular characterization and RAPD analysis of Juniperus species from Iran. Genetics and Molecular Research, 10: 1069–1074. https://doi.org/10.4238/vol10-2gmr1021
 
Klos R.J., Wang G.G., Bauerle W.L., Rieck J.R. (2009): Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecological Applications, 19: 699–708. https://doi.org/10.1890/08-0330.1
 
Konter O., Büntgen U., Carrer M., Timonen M., Esper J. (2016): Climate signal age effects in boreal tree-rings: Lessons to be learned for paleoclimatic reconstructions. Quaternary Science Reviews, 142: 164–172. https://doi.org/10.1016/j.quascirev.2016.04.020
 
Köppen W., Geiger R. (1954): Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Gotha, Klett-Perthes.
 
Li D., Fang K., Li Y., Chen D., Liu X., Dong Z. Zhou F., Guo G., Shi F., Xu C., Li Y. (2017): Climate intrinsic water efficiency and tree growth over the past 150 years humid subtropical China. PLoS ONE, 12: e0172045.
 
Looney C.E., D’Amato A.W., Fraver S., Palik B.J., Reinikainen M.R. (2016): Examining the influences of tree-to-tree competition and climate on size-growth relationships in hydric, multi-aged Fraxinus nigra stands. Forest Ecology and Management, 375: 238–248. https://doi.org/10.1016/j.foreco.2016.05.050
 
Lyon J., Sagers C.L. (1998): Structure of herbaceous plant assemblages in a forested riparian landscape. Plant Ecology, 138: 1–16. https://doi.org/10.1023/A:1009705912710
 
Marcysiak K., Mazur M., Romo A., Montserrat J.M., Didukh Y., Boratyńska K., Jasińska A., Kosiński P., Boratyński A. (2007): Numerical taxonomy of Juniperus thurifera, J. excelsa and J. foetidissima (Cupressaceae) based on morphological characters. Botanical Journal of the Linnean Society, 155: 483–495. https://doi.org/10.1111/j.1095-8339.2007.00730.x
 
Mäkinen H., Nöjd P., Kahle H.-P., Neumann U., Tveite B., Mielikäinen K., Röhle H., Spiecker H. (2002): Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171: 243–259. https://doi.org/10.1016/S0378-1127(01)00786-1
 
Martín-Benito D., Cherubini P., del Río M., Cañellas I. (2008): Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees, 22: 363–373. https://doi.org/10.1007/s00468-007-0191-6
 
McCune B., Mefford M.J. (2006): PC-ORD. Multivariate analysis of Ecological Data, Version 5. Gleneden Beach, MjM Software Design: 300.
 
Mikaeili M. (2015): Walled cities and the development of civilization in Asia Minor (Anatolia) and the Middle East. Spaces and Flows: An International Journal of Urban and Extra Urban Studies, 5: 1–25. https://doi.org/10.18848/2154-8676/CGP/v05i02/53763
 
Moisen G.G., Frescino T.S. (2002): Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157: 209–225. https://doi.org/10.1016/S0304-3800(02)00197-7
 
Özdamar K. (2009): Paket Programlar ile İstatistiksel Veri Analizi. 7. Eskişehir, Baskı, Kaan Kitabevi: 609. (in Turkish)
 
Öztürk M.Z., Çetinkaya G., Aydin S. (2017): Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. İstanbul Üniversitesi Coğrafya Dergisi – Istanbul University Journal of Geography, 35: 17–27. (in Turkish) https://doi.org/10.26650/JGEOG295515
 
Öztürk M.Z., Savran A. (2020): An oasis in the Central Anatolian Steppe: the ecology of a collapse doline. Acta Biologica Turcica, 33: 100–113.
 
Özyuvacı N. (1999): Meteoroloji ve Klimatoloji. İstanbul Üniversitesi Orman Fakültesi Yayınları No: 4196. İstanbul, Dilek Ofset Matbaacılık: 369. (in Turkish)
 
Pandey J., Sigdel S.R., Lu X., Salerno F., Dawadi B., Liang E., Camarero J.C. (2020): Early growing-season precipitation drives radial growth of alpine juniper shrubs in the central Himalayas. Geografiska Annaler: Series A, Physical Geography, 102: 317–330. https://doi.org/10.1080/04353676.2020.1761097
 
Quézel P., Médail F. (2003): Ecologie et biogéographie des forêts du bassin méditerranéen. Paris, Elsevier: 571. (in French)
 
Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek, L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456–464. https://doi.org/10.17221/75/2015-JFS
 
Rossi S., Deslauriers A., Anfodillo T., Carrer M. (2008): Age-dependent xylogenesis in timberline conifers. New Phytologist Foundation, 177: 199–208. https://doi.org/10.1111/j.1469-8137.2007.02235.x
 
Samojlik Q., Roherham I.D., Jedrzejewska B. (2013): Quantifying historic human impacts on forest environments: A Case Study in Bialowieza Forest, Poland. Environmental History, 18: 576–602.  https://doi.org/10.1093/envhis/emt039
 
Sarangzai A.M., Ahmed A. (2011): Dendrochronological potential of Junıperus excelsa (M.Bieb) from dry temperate forest of Balochistan province, Pakistan. FUUAST Journal of Biology, 1: 65–70.
 
Schwinning S., Starr B.I., Ehleringer J.R. (2005): Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake. Journal of Arid Environments, 60: 547–566. https://doi.org/10.1016/j.jaridenv.2004.07.003
 
Šimůnek V., Vacek Z., Vacek S., Ripullone F., Hájek V., D’Andrea G. (2021): Tree rings of European beech (Fagus sylvatica L.) indicate the relationship with solar cycles during climate change in central and southern Europe. Forests, 12: 259. https://doi.org/10.3390/f12030259
 
Soulé P.T., Knapp P.A (2019). Radial growth rate responses of western juniper (Juniperus occidentalis Hook.) to atmospheric and climatic changes: A longitudinal study from central Oregon, USA. Forests, 10: 1127.
 
St. George S. (2014): An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews, 95: 132–150. https://doi.org/10.1016/j.quascirev.2014.04.029
 
Stapanian M.A., Cassell D.L., Cline S.P. (1997): Regional patterns of local diversity of trees: associations with anthropogenic disturbance. Forest Ecology and Management, 93: 33–44. https://doi.org/10.1016/S0378-1127(96)03944-8
 
Štefančík I., Vacek Z., Sharma R.P., Vacek S., Rösslová M. (2018): Effect of thinning regimes on growth and development of crop trees in Fagus sylvatica stands of Central Europe over fifty years. Dendrobiology, 79: 141–155. https://doi.org/10.12657/denbio.079.013
 
Touchan R., Akkemik Ü., Hughes M.K., Erkan N. (2007): May-June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research, 68: 196–202. https://doi.org/10.1016/j.yqres.2007.07.001
 
Türkeş M. (1990): Türkiye’de kurak bölgeler ve önemli kurak yıllar. [PhD Thesis.] Istanbul, İstanbul University. (in Turkish)
 
Vacek S., Vacek Z., Remeš J., Bílek L., Hůnová I., Bulušek D., Putalová T., Král J., Simon J. (2017): Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees, 31: 1599 1617. https://doi.org/10.1007/s00468-017-1572-0
 
Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019): Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129–144. https://doi.org/10.2478/forj-2019-0013
 
Vacek Z., Prokůpková A., Vacek S., Bulušek D., Šimůnek V., Hájek V., Králíček I. (2021): Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. Forest Ecology and Management, 488: 119019. https://doi.org/10.1016/j.foreco.2021.119019
 
Winiger M., Gumpert M., Yamout H. (2005): Karakorum–Hindukush–western Himalaya: assessing high-altitude water resources. Hydrological Processes, 19: 2329–2338. https://doi.org/10.1002/hyp.5887
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti