Comparison of different non-linear models for prediction of the relationship between diameter and height of velvet maple trees in natural forests (Case study: Asalem Forests, Iran)
Ahmadi K., Alavi S.J., Tabari Kouchaksaraei M., Aertsen W. (2013): Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran. Biotechnologie, Agronomie, Société et Environnement, 17: 431–440.
Aertsen Wim, Kint Vincent, van Orshoven Jos, Özkan Kürşad, Muys Bart (2010): Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221, 1119-1130
https://doi.org/10.1016/j.ecolmodel.2010.01.007
Asadollahi F. (1987): Geographical study of plants communities of the north-west forests of Hircanian (Asalem) and its use in natural resources. Journal of Forest and Rang Management, 2: 4–7. (in Persian)
Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B, 42: 1–16.
Burk T.E., Burkhart H.E. (1984): Diameter Distributions and Yields of Natural Stands of Loblolly Pine. Blacksburg, Virginia Polytechnic Institute and State University, Blacksburg Publishing: 46.
Burkhart H.E., Strub M.R. (1974): A model for simulation of planted loblolly pine stands. In: Fries J. (ed.): Growth Models for Tree and Stand Simulation. Stockholm, Royal College of Forestry, Research Note 30: 128–135.
Buford M.A. (1986): Height–diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812–818.
Calama Rafael, Montero Gregorio (2004): Interregional nonlinear heightdiameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34, 150-163
https://doi.org/10.1139/x03-199
Colbert K.C., Larsen D.R., Lootens J.R. (2002): Height-diameter equations for thirteen Midwestern bottomland hardwood species. Northern Journal of Applied Forestry, 19: 171–176.
Curtis R.O. (1967): Height-diameter-age equations for second-growth Douglas-fir. Forest Science, 13: 365–375.
Diamantopoulou M. J., Özçelik R. (2012): Evaluation of different modeling approaches for total tree-height estimation in Mediterranean Region of Turkey. Forest Systems, 21, 383-
https://doi.org/10.5424/fs/2012213-02338
Fallah A. (2009): Determination of the Best Diameter-Height Model for the Norway spruce (Picea abies L. Karst.) in Kelardasht afforestation (North of Iran). Journal of Applied Sciences, 9, 3870-3875
https://doi.org/10.3923/jas.2009.3870.3875
Fang Zixing, Bailey R.L. (1998): Height–diameter models for tropical forests on Hainan Island in southern China. Forest Ecology and Management, 110, 315-327
https://doi.org/10.1016/S0378-1127(98)00297-7
Farr Wilbur A., DeMars Donald J., Dealy J. Edward (1989): Height and crown width related to diameter for open-grown western hemlock and Sitka spruce. Canadian Journal of Forest Research, 19, 1203-1207
https://doi.org/10.1139/x89-181
Huang Shongming, Titus Stephen J., Wiens Douglas P. (1992): Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22, 1297-1304
https://doi.org/10.1139/x92-172
Krisnawati H., Wang Y., Ades P.K. (2010): Generalized height-diameter model for Acacia mangium Wild. plantations in South Sumatra. Journal of Forest Research, 7: 1–19.
Larson Bruce C. (1986): Development and growth of even-aged stands of Douglas-fir and grand fir. Canadian Journal of Forest Research, 16, 367-372
https://doi.org/10.1139/x86-063
Larsen D.R., Hann D.W. (1987): Height-diameter Equations for Seventeen Tree Species in Southwest Oregon. Corvallis, Oregon State University, Forest Research Laboratory Research Paper, 49: 16.
Larsen David R. (1994): Adaptable stand dynamics model integrating site-specific growth for innovative silvicultural prescriptions. Forest Ecology and Management, 69, 245-257
https://doi.org/10.1016/0378-1127(94)90233-X
Loetsch F., Zöhrer F., Haller K.E. (1973): Forest Inventory. Munich, BLV Verlagsgesellschaft: 469.
Lumbres Roscinto Ian C., Lee Young Jin, Seo Yeon Ok, Kim Sung Ho, Choi Jung Kee, Lee Woo Kyun (2011): Development and validation of nonlinear height–DBH models for major coniferous tree species in Korea. Forest Science and Technology, 7, 117-125
https://doi.org/10.1080/21580103.2011.594610
Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415–420.
Moffat A. J., Matthews R. W., Hall J. E. (1991): The effects of sewage sludge on growth and foliar and soil chemistry in pole-stage Corsican pine at Ringwood Forest, Dorset, UK. Canadian Journal of Forest Research, 21, 902-909
https://doi.org/10.1139/x91-125
Olson L.D., Delen D. (2008): Advanced Data Mining Technique. Berli, Heidelberg, Springer: 180.
ÖZÇELİK Ramazan, YAVUZ Hakkı, KARATEPE Yasin, GÜRLEVİK Nevzat, KIRIŞ Rüstem (2014): Development of ecoregion-based height–diameter models for 3 economically important tree species of southern Turkey. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 38, 399-412
https://doi.org/10.3906/tar-1304-115
Parresol Bernard R. (1992): Baldcypress height–diameter equations and their prediction confidence intervals. Canadian Journal of Forest Research, 22, 1429-1434
https://doi.org/10.1139/x92-191
Pearl R., Reed L. J. (1920): On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. Proceedings of the National Academy of Sciences, 6, 275-288
https://doi.org/10.1073/pnas.6.6.275
Peng C., Zhang L., Liu J. (2001): Developing and validating nonlinear height-diameter models for major tree species of Ontario’s boreal forests. Northern Journal of Applied Forestry, 18: 87–94.
Pourmajidian M.R. (1992): Researches in Relation to Results of Afforestation with Picea abies in Kelardasht Region. [MSc Thesis.] Tehran, Tehran University: 78. (in Persian)
Prodan M. (1968): Forest Biometrics. Oxford, Pergamon Press: 447.
Ratkowsky D.A. (1990): Handbook of Nonlinear Regression. New York, Marcel Dekker: 120.
Ratkowsky David A., Reedy Terry J. (1986): Choosing Near-Linear Parameters in the Four-Parameter Logistic Model for Radioligand and Related Assays. Biometrics, 42, 575-
https://doi.org/10.2307/2531207
RICHARDS F. J. (1959): A Flexible Growth Function for Empirical Use. Journal of Experimental Botany, 10, 290-301
https://doi.org/10.1093/jxb/10.2.290
Ritchie Martin W., Hann David W. (1986): Development of a tree height growth model for Douglas-fir. Forest Ecology and Management, 15, 135-145
https://doi.org/10.1016/0378-1127(86)90142-8
Ritz C., Streibig J. (2008): Nonlinear regression with R. New York, Springer: 148.
Sagheb-talebi K.H., Sajedi T., Yazdian F. (2004): Forests of Iran. Tehran, Research Institute of Forests and Rangelands Publication: 339. (in Persian)
L�pez S�nchez Carlos A., Gorgoso Varela Javier, Castedo Dorado Fernando, Rojo Alboreca Alberto, Soalleiro Roque Rodr�guez, �lvarez Gonz�lez Juan Gabriel, S�nchez Rodr�guez Federico (2003): A height-diameter model for
Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60, 237-245
https://doi.org/10.1051/forest:2003015
Schreuder H.T., Hafley W.L., Bannett F.A. (1979): Yield prediction for unthinned natural slash pine stands. Forest Science, 25: 25–30.
Schnute Jon (1981): A Versatile Growth Model with Statistically Stable Parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1128-1140
https://doi.org/10.1139/f81-153
Sheikholeslami H. (1998): Study of the Effects of Changes in Elevation, Slope and Vegetation Cover in Soil Transformation of the Asalem Region. [MSc Thesis.] Tehran, Tehran University: 175. (in Persian)
Siahipour Z., Rostami T., Taleb S., Taheri K. (2002): Investigation of sustainable Picea abies in afforestation of Guilan province. Iranian Journal of Forest and Poplar Research, 312: 1–53. (in Persian)
SIBBESEN E. (1981): SOME NEW EQUATIONS TO DESCRIBE PHOSPHATE SORPTION BY SOILS. Journal of Soil Science, 32, 67-74
https://doi.org/10.1111/j.1365-2389.1981.tb01686.x
Somers G.L., Farrar R.M. (1991): Bio-mathematical growth equations for natural longleaf pine stands. Forest Science, 37: 227–244.
Stage A.R. (1963): A mathematical approach to polymorphic site index curves for grand fir. Forest Science, 9: 167–180.
Stage A.R. (1975): Prediction of Height Increment for Models of Forest Growth. Research Paper INT-164. Ogden, Intermountain Forest and Range Experiment Station, USDA Forest Service: 20.
Stoffels A., van Soeset J. (1953): The main problems in sample plots. 3. height regression. Nederlands Bosbouw Tijdschrift, 25: 190–199.
Van Deusen P.C., Biging G.S. (1985): Development of a tree height growth model for Douglas-fir. Forest Ecology and Management, 15: 135–145.
Watts S.B. (1983): Forestry Handbook for British Columbia. 4th Ed. Vancouver, University of British Columbia: 773.
Winsor C. P. (1932): The Gompertz Curve as a Growth Curve. Proceedings of the National Academy of Sciences, 18, 1-8
https://doi.org/10.1073/pnas.18.1.1
Wykoff W.R., Crookston N.L., Stage A.R. (1982): User’s Guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, Intermountain Forest and Range Experiment Station, USDA Forest Service: 112.
Yang R. C., Kozak A., Smith J. H. G. (1978): The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 8, 424-431
https://doi.org/10.1139/x78-062
Zeide Boris (1989): Accuracy of equations describing diameter growth. Canadian Journal of Forest Research, 19, 1283-1286
https://doi.org/10.1139/x89-195
ZHANG L (): Cross-validation of Non-linear Growth Functions for Modelling Tree Height–Diameter Relationships. Annals of Botany, 79, 251-257
https://doi.org/10.1006/anbo.1996.0334