Effect of LED lights on the in vitro growth of Pinus pseudostrobus Lindl., plants


Marín-Martínez L.A., Iglesias-Andreu L.G. (2022): Effect of LED lights on the in vitro growth of Pinus pseudostrobus Lindl., plants. J. For. Sci., 68: 311–317.

download PDF

Pinus pseudostrobus Lindl. is a species endemic to Mexico and is widely used in reforestation programmes, as it is highly adapted to poor, shallow, limestone soils and has high commercial importance. However, it is necessary to preserve this genetic material since it is in trouble due to high rates of deforestation, land use change, and forest fires, so it is necessary to have effective strategies to obtain good quality seedlings. Due to the properties of LED (light emitting diode) lamps used for illumination in the production of in vitro plants, the effects of two different lighting systems (LED and fluorescent) on an in vitro culture were analysed for the morphological characteristics of the growth and photosynthetic pigment content in P. pseudostrobus seedlings. The length and root size of the seedlings were affected by the type of illumination, where a red LED light was the most effective at 30 days of evaluation. However, a blue LED light was equally effective as a red LED light at 60 days of seedling development. On the other hand, the fluorescent light was better in terms of the number of needles in the first stage, but we found the blue LED light to be better in the second stage. For the photosynthetic pigment content, the highest values were found with the blue LED light. The results showed that the LED lighting system favours the growth, development, and photosynthetic pigment content of the species under study.

Berkovich Y.A., Konovalova I.O., Smolyanina S.O., Erokhin A.N., Avercheva O.V., Bassarskaya E.M., Kochetova G.V., Zhigalova T.V., Yakovleva O.S., Tarakanov I.G. (2017): LED crop illumination inside space greenhouses. REACH, 6: 11–24. https://doi.org/10.1016/j.reach.2017.06.001
Bowyer J.R., Leegood R.C. (1997): 2 – Photosynthesis. In: Dey P.M., Harborne J.B. (eds): Plant Biochemistry. San Diego, Academic Press: 49–110.
Caffarri S., Tibiletti T., Jennings C.R., Santabarbara S. (2014): A comparison between plant photosystem I and photosystem II architecture and functioning. Current Protein and Peptide Science, 15: 296–331. https://doi.org/10.2174/1389203715666140327102218
Casierra-Posada F., Peña-Olmos J. (2015): Modificaciones fotomorfogénicas inducidas por la calidad de la luz en plantas cultivadas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39: 84–92. (in Spanish) https://doi.org/10.18257/raccefyn.276
Castillo A. (2008): Propagación de plantas por cultivo in vitro: una biotecnología que nos acompaña hace mucho tiempo. Available at: http://www.inia.org.uy/publicaciones/documentos/lb/ad/2004/ad_382.pdf (accessed Dec 15, 2021; in Spanish).
Cioć M., Szewczyk A., Żupnik M., Kalisz A., Pawlowska B. (2018): LED lighting affects plant growth, morphogenesis, and phytochemical contents of Myrtus communis L. in vitro. Plant Cell, Tissue and Organ Culture, 132: 433–447. https://doi.org/10.1007/s11240-017-1340-2
Da Rocha P.S.G., de Oliveira R.P., Scivittaro W.B., dos Santos U.L. (2010): Diodos emissores de luz e concentrações de BAP na multiplicação in vitro de morangueiro. Ciencia Rural, 40: 1922–1928. https://doi.org/10.1590/S0103-84782010000900011
Dutta Gupta S., Agarwal A. (2017): Influence of LED lighting on In Vitro plant regeneration and associated cellular redox balance. In: Dutta Gupta S. (ed.): Light Emitting Diodes for Agriculture. Singapore, Springer Singapore: 273–303.
Dutta Gupta S., Jatothu B. (2013): Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Reports. 7: 211–220. https://doi.org/10.1007/s11816-013-0277-0
Golovatskaya I.F., Karnachuk R.A. (2015): Role of green light in physiological activity of plants. Russian Journal of Plant Physiology, 62: 727–740. https://doi.org/10.1134/S1021443715060084
Hernández R., Kubota C. (2016): Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121: 66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001
Kendrick R.E., Kronenberg G.M.H. (2012): Photomorphogenesis in Plants. Dordrecht, Kluwer Academic Publishers: 828.
Kim Y.W., Moon H.K. (2014): Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnology Reports, 8: 259–266. https://doi.org/10.1007/s11816-014-0319-2
Kwon A.R., Cui H.Y., Lee H., Shin H., Kang K.S., Park S.Y. (2015): Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana. Acta Physiologiae Plantarum, 37: 65. https://doi.org/10.1007/s11738-015-1812-0
Li Q., Kubota C. (2009): Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67: 59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011
Lin Y., Li J., Li B., He T., Chun Z. (2011): Effect of the light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell, Tissue and Organ Culture, 105: 329–335. https://doi.org/10.1007/s11240-010-9871-9
Loberant B., Altman A. (2010): Micropropagation of plants. In: Flickinger M. (ed.): Encyclopedia of Industrial Biotechnology. Hoboken, John Wiley & Sons, Inc.: 3499–3515.
Lloyd G., McCown B. (1980): Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagators’ Society, 30: 421–427.
Mendoza Paredes J.E., Castillo-González A.M., Avitia-García E., García-Mateos M.R., Valdéz-Aguilar L.A. (2021): Efecto de diferentes proporciones de luz LED azul: roja en plantas de chile habanero (Capsicum chinense Jacq.). Biotecnia, 23: 110–119. (in Spanish) https://doi.org/10.18633/biotecnia.v23i1.1288
Mengxi L., Zhigang X., Yang Y., Yijie F. (2011): Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell, Tissue and Organ Culture. 106: 1–10. https://doi.org/10.1007/s11240-010-9887-1
Moro-Peña J.A. (2020): Efecto de iluminación LED sobre el prendimiento de esquejes de lavanda rizada. Available at: http://hdl.handle.net/10835/10278 (accessed Jan 15, 2022; in Spanish).
Novičkovas A., Brazaityte A., Duchovskis P., Jankauskiene J., Samuoliene G., Virsile A., Sirtautas R., Bliznikas Z., Zukauskas A. (2012): Solid-state lamps (LEDs) for the shortwavelength supplementary lighting in greenhouses: Experimental results with cucumber. Acta Horticulturae. 927: 723–730. https://doi.org/10.17660/ActaHortic.2012.927.90
Porra R.J., Thompson W.A.A., Kriedelman P.E. (1989): Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta – Bioenergetics. 975: 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
Ramírez-Mosqueda M.A., Iglesias-Andreu L.G., Luna-Sánchez I.J. (2017): Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks. South African Journal of Botany, 109: 288–293. https://doi.org/10.1016/j.sajb.2017.01.205
Río-Álvarez I., Rodríguez-Herva J.J., Martínez P.M., González-Melendi P., García-Casado G., Rodríguez-Palenzuela P., López-Solanilla E. (2014): Light regulates motility, attachment, and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environmental Microbiology, 16: 2072–2085. https://doi.org/10.1111/1462-2920.12240
Rizzo Zaldumbide S.V. (2020): Efecto de diferentes tipos de luz en el crecimiento de plantas in vitro: Revisión de Literatura. Available at: https://bdigital.zamorano.edu/bitstream/11036/6812/1/CPA-2020-T094.pdf (accessed Feb 5, 2022; in Spanish).
Samuolienė G., Sirtautas R., Brazaitytė A., Duchovskis P. (2012): LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry. 134: 1494–1499. https://doi.org/10.1016/j.foodchem.2012.03.061
Smirnakou S., Ouzounis T., Radoglou K. (2016): Effects of continuous spectrum LEDs used in indoor cultivation of two coniferous species Pinus sylvestris L. and Abies borisii-regis Mattf. Scandinavian Journal of Forest Research, 32: 115–122. https://doi.org/10.1080/02827581.2016.1227470
Tenga A.Z., Marie B.A., Ormrod D.P. (1989): Leaf greenness meter to assess ozone injury to tomato leaves. HortScience, 24: 514.
Urrestarazu M., Nájera C., del Mar Gea M. (2016): Effect of the spectral quality and intensity of light-emitting diodes on several horticultural crops. HortScience, 51: 268–271. https://doi.org/10.21273/HORTSCI.51.3.268
Verma S.K., Gantait S., Jeong B.R., Hwang S.J. (2018): Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Scientific Reports, 8: 18009. https://doi.org/10.1038/s41598-018-36113-9
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti