Abbruzzese G., Beritognolo I., Muleo R., Piazzai M., Sabatti M., Scarascia Mugnozza G., Kuzminsky E. (2009): Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 66: 381–388.
https://doi.org/10.1016/j.envexpbot.2009.04.008
Abramoff R.Z., Finzi A.C. (2015): Are above and below ground phenology in sync? New Phytologist, 205: 1054–1061.
https://doi.org/10.1111/nph.13111
Adams H.D., Kolb T.E. (2004): Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf d13C. Oecologia, 140: 217–225.
https://doi.org/10.1007/s00442-004-1585-4
Ahmad K., Saqib M., Akhtar J., Ahmad R. (2012): Evaluation and characterization of genetic variation in maize (Zea mays L.) for salinity tolerance. Pakistan Journal of Agricultural. Science, 49: 521–526.
Álvarez S., Sánchez-Blanco M.J. (2014): Long-term effect of salinity on plant quality water relations photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biology, 16: 757–764.
https://doi.org/10.1111/plb.12106
Ashraf M., Harris P. (2013): Photosynthesis under stressful environments: an overview. Photosynthetica, 51: 163–190.
https://doi.org/10.1007/s11099-013-0021-6
Bartels D., Sunkar R. (2005): Drought and salt tolerance in plants. Critical Review in plant Science, 24: 23–58.
https://doi.org/10.1080/07352680590910410
Boughalleb F., Denden M., Tiba B.B. (2009): Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum, 31: 947–960.
https://doi.org/10.1007/s11738-009-0310-7
Chaves M.M., Flexas J., Pinheiro C. (2009): Photosynthesis under drought and salt stress regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551–560.
https://doi.org/10.1093/aob/mcn125
Essah P. A., Davenport R. J., Tester, M. (2003): Sodium influx and accumulation in Arabidopsis thaliana. Plant Physiology, 133: 307–318.
https://doi.org/10.1104/pp.103.022178
Farquhar G., Sharkey T.D. (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33: 317–345.
https://doi.org/10.1146/annurev.pp.33.060182.001533
Fernández-García N., Olmos E., Bardisi E., Garma G.D.L., López-Berenguer C., Rubio Asensio J.S. (2014): Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant henna (Lawsonia inermis L.). Journal of Plant Physiology, 171: 64–75.
https://doi.org/10.1016/j.jplph.2013.11.004
Ferrio J. P., Florit A., Vega A., Serrano L., Voltas J. (2003): d13C and tree ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia, 137: 512–518.
https://doi.org/10.1007/s00442-003-1372-7
Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. (2004): Diffusive and metabolic limitations to photothesis under drought and salinity in C3 plants. Plant Biology, 6: 269–279.
https://doi.org/10.1055/s-2004-820867
Glaeser L.C., Vitt D.H., Ebbs S. (2016): Responses of the wetland grass, Beckmannia syzigachne to salinity and soil wetness consequences for wetland reclamation in the oil sands area of Alberta Canada. Ecological Engineering, 86: 24–30.
https://doi.org/10.1016/j.ecoleng.2015.10.009
Hansen E. H., Munns D.N. (1988): Effects of CaSO4 and NaCl on growth and nitrogen fixation of Leucaena leucocephala. Plant and Soil, 107: 95–99.
https://doi.org/10.1007/BF02371549
Harfouche A., Meilan R., Kirst M., Morgante M., Boerjan W., Sabatti M., Scarascia Mugnozza G. (2012): Accelerating the domestication of forest trees in a changing world. Trends in Plant Science, 17: 64–72.
https://doi.org/10.1016/j.tplants.2011.11.005
Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. (2000): Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51: 463–499.
https://doi.org/10.1146/annurev.arplant.51.1.463
Ioannidis N., Ortigosa M., Veramendi J., Pint o-Marijuan M., Fleck I., Carvajal P., Kotzabasis K., Santos M., Torne M. (2009): Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochimica et Biophysica Acta (BBA) Bioenergetics, 1787: 1215–1222.
https://doi.org/10.1016/j.bbabio.2009.05.014
James R.A., Rivelli A.R., Munns R., von Caemmerer S. (2002): Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29: 1393–403.
https://doi.org/10.1071/FP02069
Koyro H.W. (2006): Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte (Plantago coronopus L.). Environmental and Experimental Botany, 56: 136–146.
https://doi.org/10.1016/j.envexpbot.2005.02.001
Lynch J. (1995): Root architecture and plant productivity. Plant Physiology. 109: 7–13.
https://doi.org/10.1104/pp.109.1.7
Mass E.V., Hoffman G.J. (1977): Crop salt tolerance current assessment. Journal of irrigation and Drainage Division, 103: 115–134.
Meloni D.A., Oliva M.A., Martinez C.A. (2003): Photosynthesis and activity of superoxide dismutase peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49: 69–76.
https://doi.org/10.1016/S0098-8472(02)00058-8
Munns R. (2002): Comparative physiology of salt and water stress. Plant, Cell & Environment, 25: 239–250.
Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651–681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns R., James R.A., Lauchli A. (2006): Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Environmental Botany, 57: 1025–1043.
https://doi.org/10.1093/jxb/erj100
Neale D.B., Kremer A. (2011): Forest tree genomics growing resources and applications. Nature Review Genetics, 12: 111–122.
https://doi.org/10.1038/nrg2931
Niazi M.L.K., Haq M.I., Malik K.A. (1985): Salt tolerance studies on ipil ipil (Leucaena leucocephala) cv. K-8. Pakistan Journal of Botany, 17: 43–47.
Norby R.J., Ledford J., Reilly C.D., Miller N.E., Oneill E.G. (2004): Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceeding of the National Academy of Science of the United State of America, 101: 9689–9693.
https://doi.org/10.1073/pnas.0403491101
Ouimet R., Camiré C., Brazeau M., More J.D. (2008): Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Canadian Journal of Forestry Research, 38: 92–100.
https://doi.org/10.1139/X07-134
Qureshi A.S., McCornick P.G., Qadir M., Aslam Z. (2007) Managing salinity and waterlogging in the Indus Basin of Pakistan. Agricultural Water Management, 95: 1–10.
https://doi.org/10.1016/j.agwat.2007.09.014
Rasheed F., Dreyer E., Richard B., Brignolas F., Montpied P., Thiec D.L. (2013): Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant level in hybrid Populus deltoides × nigra. Plant, Cell and Environment, 36: 87–102.
https://doi.org/10.1111/j.1365-3040.2012.02556.x
Rasheed F., Dreyer E., Richard B., Brignolas F., Brendel O., Thiec D.L. (2015): Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole plant level: an example from Populus nigra L. Plant Cell & Environment, 38: 670–684.
Shakoor U.A., Saboor I.A., Mohsin A.Q. (2011): Impact of climate change on agriculture empirical evidence from arid region. Pakistan Journal of Agricultural Sciences, 48: 327–333.
Wang L., Mu M., Li X., Lin P., Wang W. (2011): Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. Journal of Plant Ecology, 4: 292–301.
https://doi.org/10.1093/jpe/rtq008
Zafar Z., Rasheed F., Shaheen F., Hussain Z., Anwaar H.A., Rizwan M., Mohsin M., Qadeer A. (2018): The influence of salt stress on growth and biomass production of Populus deltoides. International Journal of Bioscience, 13: 191–197.
Zafar Z., Rasheed F., Delagrange S., Abdullah M., Ruffner C. (2019): Acclimatization of Terminalia Arjuna saplings to salt stress: characterization of growth biomass and photosynthetic parameters. Journal of Sustainable Forestry, 39: 76–91.
https://doi.org/10.1080/10549811.2019.1614067
Zhu K. (2001): Plant salt tolerance. Trends in Plant Science, 6: 66–71.
https://doi.org/10.1016/S1360-1385(00)01838-0
Zhu Z., Chen J., Zheng H.L. (2012): Physiological and proteomic characterization of salt tolerance in a mangrove plant, (Bruguiera gymnorrhiza L.) Lam. Tree Physiology, 32: 1378–1388.
https://doi.org/10.1093/treephys/tps097