A fixed count sampling estimator of stem density based on a survival function

https://doi.org/10.17221/46/2015-JFSCitation:Magnussen S. (2015): A fixed count sampling estimator of stem density based on a survival function. J. For. Sci., 61: 485-495.
download PDF
In fixed count sampling (FCS) a fixed number (k) of observations is made at n randomly selected sample locations. For estimation of stem density, the distance from a random sample location to the k nearest trees was measured. It is known that practical FCS estimators of stem density are biased. With the objective of reducing bias in FCS estimators of stem density, a new estimator derived from a survival function with distance acting as time was presented. To allow for spatial heterogeneity in stem density, the survival function includes shared frailty. Encouraging results with k = 6 in terms of bias, root mean squared error (RMSE), and coverage of nominal 95% confidence intervals were obtained in an extensive testing with simulated random sampling from 54 actual and four simulated spatial point patterns of tree locations. Sample sizes were 9, 15, and 30, with 1200 replications per setting. The performance across sites of the new FCS estimator was variable but almost paralleled that of a design-based estimator with fixed area plots. Users of the new FCS estimator can expect an absolute relative bias and a root mean squared error that are 1% greater than for sampling with fixed area plots holding an average of k trees. The chance of a smaller RMSE with the proposed estimator was estimated at 0.44.
References:
Banerjee S. (): Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics, 4, 123-142  https://doi.org/10.1093/biostatistics/4.1.123
 
Barbour Michael T., Gerritsen Jeroen (1996): Subsampling of Benthic Samples: A Defense of the Fixed-Count Method. Journal of the North American Benthological Society, 15, 386-  https://doi.org/10.2307/1467285
 
Baskerville G. L. (1972): Use of Logarithmic Regression in the Estimation of Plant Biomass. Canadian Journal of Forest Research, 2, 49-53  https://doi.org/10.1139/x72-009
 
Casella G., Berger R.L. (2002): Statistical Inference. 2nd Ed. Pacific Grove, Duxbury Press: 660.
 
Chen M.Y., Tsai J.L. (1980): Plotless sampling methods for investigating the arboreal stratum of vegetation. Quarterly Journal of Chinese Forestry, 13: 29–38.
 
Clayton Gareth, Cox Trevor F. (1986): Some Robust Density Estimators for Spatial Point Processes. Biometrics, 42, 753-  https://doi.org/10.2307/2530691
 
Cleves M.A., Gould W.W., Gutierrez R.G. (2004): An Introduction to Survival Analysis Using STATA. College Station, STATA Press: 308.
 
Conover W.J. (1980): Practical Nonparametric Statistics. New York, Wiley: 592.
 
COX TREVOR F. (1976): The robust estimation of the density of a forest stand using a new conditioned distance method. Biometrika, 63, 493-499  https://doi.org/10.1093/biomet/63.3.493
 
Delince J. (1986): Robust Density Estimation Through Distance Measurements. Ecology, 67, 1576-  https://doi.org/10.2307/1939088
 
Doberstein Craig P., Karr James R., Conquest Loveday L. (2000): The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biology, 44, 355-371  https://doi.org/10.1046/j.1365-2427.2000.00575.x
 
Eberhardt L. L. (1967): Some Developments in 'Distance Sampling'. Biometrics, 23, 207-  https://doi.org/10.2307/2528156
 
Farnsworth George L., Pollock Kenneth H., Nichols James D., Simons Theodore R., Hines James E., Sauer John R. (2002): A REMOVAL MODEL FOR ESTIMATING DETECTION PROBABILITIES FROM POINT-COUNT SURVEYS. The Auk, 119, 414-  https://doi.org/10.1642/0004-8038(2002)119[0414:ARMFED]2.0.CO;2
 
Fehrmann Lutz, Gregoire Timothy G., Kleinn Christoph (2012): Triangulation based inclusion probabilities: a design-unbiased sampling approach. Environmental and Ecological Statistics, 19, 107-123  https://doi.org/10.1007/s10651-011-0177-9
 
Gregoire T.G., Valentine H.T. (2008): Sampling Strategies for Natural Resources and the Environment. Boca Raton, Chapman & Hall/CRC: 465.
 
Gutierrez R.G. (2002): Parametric frailty and shared frailty survival models. The Stata Journal, 2: 22–44.
 
Hatch Charles R., Gerrard Douglas J., Tappeiner II John C. (1975): Exposed Crown Surface Area: A Mathematical Index of Individual Tree Growth Potential. Canadian Journal of Forest Research, 5, 224-228  https://doi.org/10.1139/x75-030
 
Haxtema Zane, Temesgen Hailemariam, Marquardt Theresa (2012): Evaluation of <I>n</I>-Tree Distance Sampling for Inventory of Headwater Riparian Forests of Western Oregon. Western Journal of Applied Forestry, 27, 109-117  https://doi.org/10.5849/wjaf.10-035
 
Hosmer D.W.Jr., Lemeshow S. (1999): Applied Survival Analysis. Regression Modeling of Time to Event Data. New York, John Wiley & Sons: 386.
 
Illian J., Penttinen A., Stoyan H., Stoyan D. (2008): Statistical Analysis and Modelling of Spatial Point Patterns. Chichester, Wiley: 534.
 
Isham V. (2010): Spatial point process models. In: Gelfand A.E., Diggle P.J., Fuentes M., Guttorp P. (eds): Handbook of Spatial Statistics. Boca Raton, CRC Press /Taylor&Francis: 283–298.
 
Jianrang W. (1988): Application of plotless sampling method to the warm-temperate deciduous broad-leaved forests. Acta Botanica Boreali-occidentalia Sinica, 1: 7.
 
Kleinn Chr (1996): Ein Vergleich der Effizienz von verschiedenen Clusterformen in forstlichen Großrauminventuren. Forstwissenschaftliches Centralblatt, 115, 378-390  https://doi.org/10.1007/BF02738616
 
Kleinn C., Vilčko F. (2006a): Design-unbiased estimation for point-to-tree distance sampling. Canadian Journal of Forest Research, 36: 1407–1414.
 
Kleinn C., Vilčko F. (2006b): A new empirical approach for estimation in k-tree sampling. Forest Ecology and Management, 237: 522–533.
 
Kleinn C., Vilčko F., Fehrmann L., Hradetzky J. (2009): Zur auswertung der k-baum-probe. Allgemeine Forst und Jagdzeitung, 180: 228–237.
 
Kotz S., Johnson N.L. (1988): Taylor-series linearization. In: Kotz S., Johnson N.L. (eds): Encyclopedia of Statistical Sciences. New York, Wiley: 646–647.
 
Kronenfeld B.J. (2009): A plotless density estimator based on the asymptotic limit of ordered distance estimation values. Forest Science, 55: 283–292.
 
Lessard V.C., Drummer T.D., Reed D.D.A. (2002): Precision of density estimates from fixed-radius plots compared to n-tree distance sampling. Forest Science, 48: 1–6.
 
Lessard V.C., Reed D., Monkevich N. (1994): Comparing n-tree distance sampling with point and plot sampling in northern Michigan forest types. Northern Journal of Applied Forestry, 11: 12–16.
 
Li Yi, Ryan Louise (2002): Modeling Spatial Survival Data Using Semiparametric Frailty Models. Biometrics, 58, 287-297  https://doi.org/10.1111/j.0006-341X.2002.00287.x
 
Li Yi, Ryan Louise (2004): Survival Analysis With Heterogeneous Covariate Measurement Error. Journal of the American Statistical Association, 99, 724-735  https://doi.org/10.1198/016214504000001079
 
Lynch Thomas B. (2012): A mirage boundary correction method for distance sampling. Canadian Journal of Forest Research, 42, 272-278  https://doi.org/10.1139/x11-185
 
Lynch Thomas B., Rusydi Rusydi (1999): Distance sampling for forest inventory in Indonesian teak plantations. Forest Ecology and Management, 113, 215-221  https://doi.org/10.1016/S0378-1127(98)00427-7
 
Lynch Thomas B, Wittwer Robert F (2003): n -Tree distance sampling for per-tree estimates with application to unequal-sized cluster sampling of increment core data. Canadian Journal of Forest Research, 33, 1189-1195  https://doi.org/10.1139/x03-036
 
Magnussen S. (2012a): Fixed-count density estimation with virtual plots. Spatial Statistics, 2: 33–46.
 
Magnussen S. (2012b): A new composite k-tree estimator of stem density. European Journal of Forest Research, 131: 1513–1527.
 
Magnussen Steen (2014): Robust fixed-count density estimation with virtual plots. Canadian Journal of Forest Research, 44, 377-382  https://doi.org/10.1139/cjfr-2013-0288
 
Magnussen Steen, Fehrman Lutz, Platt William J. (2012): An adaptive composite density estimator for k-tree sampling. European Journal of Forest Research, 131, 307-320  https://doi.org/10.1007/s10342-011-0502-8
 
Magnussen S., Kleinn C., Picard N. (2008): Two new density estimators for distance sampling. European Journal of Forest Research, 127, 213-224  https://doi.org/10.1007/s10342-007-0197-z
 
Magnussen S., Picard N., Kleinn C. (2008): A Gamma-Poisson distribution of point to k nearest event distance. Forest Science, 54: 429–441.
 
Mandallaz D. (2008): Sampling Techniques for Forest Inventories. Boca Raton, Chapman and Hall: 251.
 
McNeill Lindsay, Kelly R.D., Barnes D.L. (1977): The use of quadrat and plotless methods in the analysis of the tree and shrub component of woodland vegetation. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 12, 109-113  https://doi.org/10.1080/00725560.1977.9648817
 
Moore P. G. (1954): Spacing in Plant Populations. Ecology, 35, 222-  https://doi.org/10.2307/1931120
 
Morisita M. (1954): Estimation of Population Density by Spacing Method. Kyushu, University of Kyushu: 187–197.
 
Morisita M. (1957): A new method for the estimation of density by the spacing method applicable to non-randomly distributed populations. Physiological Ecology, 7: 134–144.
 
Nielson Ryan M., Sugihara Robert T., Boardman Thomas J., Engeman Richard M. (2004): Optimization of ordered distance sampling. Environmetrics, 15, 119-128  https://doi.org/10.1002/env.627
 
Nothdurft Arne, Saborowski Joachim, Nuske Robert S., Stoyan Dietrich (2010): Density estimation based on k -tree sampling and point pattern reconstruction. Canadian Journal of Forest Research, 40, 953-967  https://doi.org/10.1139/X10-046
 
Oedekoven C. S., Buckland S. T., Mackenzie M. L., King R., Evans K. O., Burger L. W. (2014): Bayesian Methods for Hierarchical Distance Sampling Models. Journal of Agricultural, Biological, and Environmental Statistics, 19, 219-239  https://doi.org/10.1007/s13253-014-0167-0
 
Oehlert G.W. (1992): A Note on the delta method. The American Statistician, 46: 27–29.
 
Ohtomo E. (1971): Theoretical research on plotless sampling methods in forest survey. Bulletin of the Government Forest Experiment Station, 241: 31–164. (in Japanese with English sumary)
 
Patil S. A., Burnham K. P., Kovner J. L. (1979): Nonparametric Estimation of Plant Density by the Distance Method. Biometrics, 35, 597-  https://doi.org/10.2307/2530250
 
Payandeh Bijan, Ek Alan R. (1986): Distance methods and density estimators. Canadian Journal of Forest Research, 16, 918-924  https://doi.org/10.1139/x86-163
 
Persson O. (1964): Distance methods: The use of distance measurements in the estimation of seedling density and open space frequency. Studia Forestalia Suecica, 15: 1–68.
 
Picard N., Kouyaté A.M., Dessard H. (2005): Tree density estimations using a distance method in Mali Savanna. Forest Science, 51: 7–18.
 
Pollard J. H. (1971): On Distance Estimators of Density in Randomly Distributed Forests. Biometrics, 27, 991-  https://doi.org/10.2307/2528833
 
Pommerening A. (2002): Approaches to quantifying forest structures. Forestry, 75, 305-324  https://doi.org/10.1093/forestry/75.3.305
 
Roser D., Nedwell D.B., Gordon A. (1984): A note on ‘plotless’ methods for estimating bacterial cell densities. Journal of Applied Bacteriology, 56, 343-347  https://doi.org/10.1111/j.1365-2672.1984.tb01358.x
 
Schöpfer W. (1967): Ein Stichprobensimulator für Forschung und Lehre. Allgemeine Forst- und Jagdzeitung, 138: 267–273.
 
Shanks Royal E. (1954): Plotless Sampling Trials in Appalachian Forest Types. Ecology, 35, 237-  https://doi.org/10.2307/1931122
 
Snowdon P. (1991): A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720-724  https://doi.org/10.1139/x91-101
 
Steinke I., Hennenberg K.J. (2006): On the power of plotless density estimators for statistical comparisons of plant populations. Canadian Journal of Botany, 84, 421-432  https://doi.org/10.1139/b05-135
 
Thompson H. R. (1956): Distribution of Distance to Nth Neighbour in a Population of Randomly Distributed Individuals. Ecology, 37, 391-  https://doi.org/10.2307/1933159
 
White Neil A, Engeman Richard M, Sugihara Robert T, Krupa Heather W (2008): A comparison of plotless density estimators using Monte Carlo simulation on totally enumerated field data sets. BMC Ecology, 8, 6-  https://doi.org/10.1186/1472-6785-8-6
 
Wienke A. (2010): Frailty Models in Survival Analysis. Boca Raton, Chapman and Hall/CRC Press: 312.
 
Zhang Tonglin, Zhou Bingrou (2014): Test for the First-Order Stationarity for Spatial Point Processes in Arbitrary Regions. Journal of Agricultural, Biological, and Environmental Statistics, 19, 387-404  https://doi.org/10.1007/s13253-014-0177-y
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti