Exploring the variability in elastic properties of roots in Alpine tree species

https://doi.org/10.17221/4/2021-JFSCitation:

Cislaghi A. (2021): Exploring the variability in elastic properties of roots in Alpine tree species. J. For. Sci., 67: 338–356.

supplementary materialdownload PDF

Quantifying the soil reinforcement provided by roots is essential for assessing the contribution of forests to reducing shallow landslide susceptibility. Many soil-root models were developed in the literature: from standard single root model to fibre bundle model. The input parameters of all models are the geometry of roots (diameter and length) and the biomechanical properties (maximum tensile force and elastic modulus). This study aims to investigate the elastic properties estimated by the stress-strain curves measured during tensile tests. A standard procedure detected two different moduli of elasticity: one due to the root tortuosity, and the other due to the woody fibres of roots. Based on a large dataset of tensile tests on different Alpine tree species, the relationships between elastic modulus and root diameter was estimated for each series. Further, the interspecific and intraspecific variability in such relationships was investigated by a statistical analysis. The results showed more intraspecific differences in the elastic modulus vs. root diameter relationships compared to the interspecific ones. This outcome could be an important criterion of discrimination to explain the variability of the elastic properties and to provide representative biomechanical properties for specific environmental conditions.

References:
Abdi E. (2014): Effect of Oriental beech root reinforcement on slope stability (Hyrcanian Forest, Iran). Journal of Forest Science, 60: 166–173. https://doi.org/10.17221/93/2013-JFS
 
Abdi E., Deljouei A. (2019): Seasonal and spatial variability of root reinforcement in three pioneer species of the Hyrcanian forest. Austrian Journal of Forest Science, 136: 175–198.
 
Abdi E., Majnounian B., Genet M., Rahimi H. (2010): Quantifying the effects of root reinforcement of Persian Ironwood (Parrotia persica) on slope stability; a case study: Hillslope of Hyrcanian forests, northern Iran. Ecological Engineering, 36: 1409–1416. https://doi.org/10.1016/j.ecoleng.2010.06.020
 
Abdi E., Azhdari F., Abdulkhani A., Mariv H.S. (2014): Tensile strength and cellulose content of Persian ironwood (Parrotia persica) roots as bioengineering material. Journal of Forest Science, 60: 425–430. https://doi.org/10.17221/44/2014-JFS
 
Abe K., Ziemer R.R. (1991): Effect of tree roots on a shear zone: Modeling reinforced shear stress. Canadian Journal of Forest Research, 21: 1012–1019. https://doi.org/10.1139/x91-139
 
Askeland D.R., Fulay P.P., Wright W.J. (2011): The Science and Engineering of Materials. 6th Ed. Stamford, Cengage Learning: 921.
 
Bischetti G.B., Chiaradia E.A., Simonato T., Speziali B., Vitali B., Vullo P., Zocco A. (2005): Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil, 278: 11–22. https://doi.org/10.1007/s11104-005-0605-4
 
Bischetti G.B., Chiaradia E.A., Epis T., Morlotti E. (2009): Root cohesion of forest species in the Italian Alps. Plant and Soil, 324: 71–89. https://doi.org/10.1007/s11104-009-9941-0
 
Boldrin D., Leung A.K., Bengough A.G. (2017): Correlating hydrologic reinforcement of vegetated soil with plant traits during establishment of woody perennials. Plant and Soil, 416: 437–451. https://doi.org/10.1007/s11104-017-3211-3
 
Boldrin D., Leung A.K., Bengough A.G. (2018): Effects of root dehydration on biomechanical properties of woody roots of Ulex europaeus. Plant and Soil, 431: 347–369. https://doi.org/10.1007/s11104-018-3766-7
 
Burri K., Graf F., Böll A. (2009): Revegetation measures improve soil aggregate stability: A case study of a landslide area in Central Switzerland. Forest Snow and Landscape Research, 82: 45–60.
 
Burroughs E.R., Thomas B.R. (1977): Declining Root Strength in Douglas-fir After Felling as a Factor in Slope Stability. Ogden, Intermountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture: 27.
 
Burylo M., Hudek C., Rey F. (2011): Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena, 84: 70–78. https://doi.org/10.1016/j.catena.2010.09.007
 
Böhm W. (1979): Methods of Studying Root Systems. Berlin, Springer: 188.
 
Chen L., Wang P., Yang Y., He J. (2014): Constitutive model of single root system’s resistance to tensile stress-taking Pinus tabulaeformis, Betula platyphylla, Quercus mongolica and Larix gmelinii as experimental objects. PLoS ONE 9: e93066. https://doi.org/10.1371/journal.pone.0093066
 
Cislaghi A., Bischetti G.B. (2019): Source areas, connectivity, and delivery rate of sediments in mountainous-forested hillslopes: A probabilistic approach. Science of the Total Environment, 652: 1168–1186. https://doi.org/10.1016/j.scitotenv.2018.10.318
 
Cislaghi A., Bordoni M., Meisina C., Bischetti G.B. (2017): Soil reinforcement provided by the root system of grapevines: Quantification and spatial variability. Ecological Engineering, 109: 169–185. https://doi.org/10.1016/j.ecoleng.2017.04.034
 
Cislaghi A., Cohen D., Gasser E., Bischetti G.B., Schwarz M. (2019a): Field measurements of passive earth forces in steep, shallow, landslide-prone areas. Journal of Geophysical Research: Earth Surface, 124: 838–866. https://doi.org/10.1029/2017JF004557
 
Cislaghi A., Giupponi L., Tamburini A., Giorgi A., Bischetti G.B. (2019b): The effects of mountain grazing abandonment on plant community, forage value and soil properties: observations and field measurements in an alpine area. Catena, 181: 104086. https://doi.org/10.1016/j.catena.2019.104086
 
Cohen D., Lehmann P., Or D. (2009): Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water Resources Research, 45: W10436. https://doi.org/10.1029/2009WR007889
 
Commandeur P.R., Pyles M.R. (1991): Modulus of elasticity and tensile strength of Douglas-fir roots. Canadian Journal of Forest Research, 21: 48–52. https://doi.org/10.1139/x91-007
 
Cutler D.F., Rudall P.J., Gasson P.E., Gale R.M.O. (1987): Root Identification Manual of Trees and Shrubs: A Guide to the Anatomy of Roots of Trees and Shrubs Hardy in Britain and Northern Europe. London, Chapman and Hall: 247.
 
De Baets S., Poesen J., Reubens B., Wemans K., De Baerdemaeker J., Muys B. (2008): Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant and Soil, 305: 207–226. https://doi.org/10.1007/s11104-008-9553-0
 
Deljouei A., Abdi E., Majnonian Garagiz B., Schwarz M. (2018): Comparing roots mechanical characteristics of hornbeam trees in different diameter at breast height classes. Forest and Wood Products, 71: 199–207.
 
Deljouei A., Abdi E., Schwarz M., Majnounian B., Sohrabi H., Dumroese R.K. (2020): Mechanical characteristics of the fine roots of two broadleaved tree species from the temperate Caspian Hyrcanian ecoregion. Forests, 11: 345. https://doi.org/10.3390/f11030345
 
Dias A.S., Pirone M., Urciuoli G. (2017): Review of the methods for evaluation of root reinforcement in shallow landslides. In: WLF 2017: Advancing Culture of Living with Landslide. Workshop on World Landslide Forum. Ljubljana, Slovenia. May 29, 2017. 641-648.
 
Endo T., Tsuruta T. (1969): Effects of tree root upon the shearing strengths of soils. Annual Report of the Hokkaido Branch, Tokyo Forest Experiment Station, 18: 168–179.
 
Ettbeb A.E., Rahman Z.A., Razi Idris W.M., Adam J., Rahim S.A., Ahmad Tarmidzi S.N., Lihan T. (2020): Root tensile resistance of selected pennisetum species and shear strength of root-permeated soil. Applied and Environmental Soil Science, 2020: 3484718. https://doi.org/10.1155/2020/3484718
 
Fan C.-C., Su C.-F. (2008): Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological Engineering, 33: 157–166. https://doi.org/10.1016/j.ecoleng.2008.02.013
 
FAO (2014): World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Rome, FAO: 181.
 
Finér L., Ohashi M., Noguchi K., Hirano Y. (2011): Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261: 265–277. https://doi.org/10.1016/j.foreco.2010.10.016
 
Genet M., Stokes A., Salin F., Mickovski S.B., Fourcaud T., Dumail J.-F., Van Beek R. (2005): The influence of cellulose content on tensile strength in tree roots. Plant and Soil, 278: 1–9. https://doi.org/10.1007/s11104-005-8768-6
 
Genet M., Kokutse N., Stokes A., Fourcaud T., Cai X., Ji J., Mickovski S. (2008): Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age and stand structure on slope stability. Forest Ecology and Management, 256: 1517–1526. https://doi.org/10.1016/j.foreco.2008.05.050
 
Genet M., Li M., Luo T., Fourcaud T., Clément-Vidal A., Stokes A. (2011): Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Annals of Botany, 107: 311–320. https://doi.org/10.1093/aob/mcq237
 
Giadrossich F., Schwarz M., Cohen D., Cislaghi A., Vergani C., Hubble T., Phillips C., Stokes A. (2017): Methods to measure the mechanical behaviour of tree roots: A review. Ecological Engineering, 109: 256–271. https://doi.org/10.1016/j.ecoleng.2017.08.032
 
Giadrossich F., Schwarz M., Marden M., Marrosu R., Phillips C. (2020): Minimum representative root distribution sampling for calculating slope stability in Pinus radiata D. Don plantations in New Zealand. New Zealand Journal of Forestry Science, 50: 1–12. https://doi.org/10.33494/nzjfs502020x68x
 
Giupponi L., Pentimalli D., Manzo A., Panseri S., Giorgi A. (2018): Effectiveness of fine root fingerprinting as a tool to identify plants of the Alps: Results of a preliminary study. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology, 152: 464–473. https://doi.org/10.1080/11263504.2017.1306003
 
Gray D.H., Ohashi H. (1983): Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 109: 335–353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)
 
Gray D.H., Sotir R.B. (1996): Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. New York, John Wiley & Sons: 400.
 
Hales T.C., Ford C.R., Hwang T., Vose J.M., Band L.E. (2009): Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research, 114: F03013. https://doi.org/10.1029/2008JF001168
 
Hales T.C., Cole-Hawthorne C., Lovell L., Evans S.L. (2013): Assessing the accuracy of simple field based root strength measurements. Plant and Soil, 372: 553–565. https://doi.org/10.1007/s11104-013-1765-2
 
Hales T.C., Miniat C.F. (2017): Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. Earth Surface Processes and Landforms, 42: 803–813. https://doi.org/10.1002/esp.4039
 
Hathaway R.L., Penny D. (1975): Root strength in some Populus and Salix clones. New Zealand Journal of Botany, 13: 333–344. https://doi.org/10.1080/0028825X.1975.10430330
 
Ji J., Kokutse N., Genet M., Fourcaud T., Zhang Z. (2012): Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena, 92: 139–154. https://doi.org/10.1016/j.catena.2011.12.008
 
Kerstens S., Decraemer W.F., Verbelen J.-P. (2001): Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiology, 127: 381–385. https://doi.org/10.1104/pp.010423
 
Lee J.-T., Chu M.-Y., Lin Y.-S., Kung K.-N., Lin W.-C., Lee M.-J. (2020): Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas. Forests, 11: 179. https://doi.org/10.3390/f11020179
 
Levene H. (1960): Robust tests for equality of variances. In: Olkin I., Ghurye S.G., Hoeffding W., Madow W.G., Mann H.B. (eds): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford, Stanford University Press: 278–292.
 
Loades K.W., Bengough A.G., Bransby M.F., Hallett P.D. (2013): Biomechanics of nodal, seminal and lateral roots of barley: Effects of diameter, waterlogging and mechanical impedance. Plant and Soil, 370: 407–418. https://doi.org/10.1007/s11104-013-1643-y
 
Löbmann M.T., Geitner C., Wellstein C., Zerbe S. (2020): The influence of herbaceous vegetation on slope stability – A review. Earth-Science Reviews, 209: 103328. https://doi.org/10.1016/j.earscirev.2020.103328
 
Makarova O.V., Cofie P., Koolen A.J. (1998): Axial stress–strain relationships of fine roots of beech and larch in loading to failure and in cyclic loading. Soil and Tillage Research, 45: 175–187. https://doi.org/10.1016/S0933-3630(97)00017-2
 
Mao Z., Jourdan C., Bonis M.-L., Pailler F., Rey H., Saint-André L., Stokes A. (2013): Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis. Plant and Soil, 363: 357–382. https://doi.org/10.1007/s11104-012-1324-2
 
Mattia C., Bischetti G.B., Gentile F. (2005): Biotechnical characteristics of root systems of typical Mediterranean species. Plant and Soil, 278: 23–32. https://doi.org/10.1007/s11104-005-7930-5
 
Meijer G.J., Bengough A.G., Knappett J.A., Loades K.W., Nicoll B.C. (2018a): In situ measurement of root-reinforcement using the corkscrew extraction method. Canadian Geotechnical Journal, 55: 1372–1390. https://doi.org/10.1139/cgj-2017-0344
 
Meijer G.J., Bengough G., Knappett J., Loades K, Nicoll B. (2018b): In situ root identification through blade penetrometer testing – part 2: Field testing. Géotechnique, 68: 320–331. https://doi.org/10.1680/jgeot.16.P.204
 
Meijer G.J., Bengough G.A., Knappett J., Loades K., Nicoll B. (2019): Measuring the strength of root-reinforced soil on steep natural slopes using the corkscrew extraction method. Forests, 10: 1135. https://doi.org/10.3390/f10121135
 
Meyer F.H., Gottsche D. (1971): Distribution of root tips and tender roots of beech. In: Ellenberg H. (ed): Integrated Experimental Ecology. Berlin, Heidelberg, Springer: 48–52.
 
Mickovski S.B., Hallett P.D., Bransby M.F., Davies M.C., Sonnenberg R., Bengough A.G. (2009): Mechanical reinforcement of soil by willow roots: Impacts of root properties and root failure mechanism. Soil Science Society of America Journal, 73: 1276–1285. https://doi.org/10.2136/sssaj2008.0172
 
Naghdi R., Maleki S., Abdi E., Mousavi R., Nikooy M. (2013): Assessing the effect of Alnus roots on hillslope stability in order to use in soil bioengineering. Journal of Forest Science, 59: 417–423. https://doi.org/10.17221/47/2013-JFS
 
O’Loughlin C.L. (1974a): A study of tree root strength deterioration following clearfelling. Canadian Journal of Forest Research, 4: 107–113. https://doi.org/10.1139/x74-016
 
O’Loughlin C.L. (1974b): The effect of timber removal on the stability of forest soils. Journal of Hydrology (New Zealand), 13: 121–134.
 
Operstein V., Frydman S. (2000): The influence of vegetation on soil strength. Proceedings of the Institution of Civil Engineers-Ground Improvement, 4: 81–89. https://doi.org/10.1680/grim.2000.4.2.81
 
Pollen N., Simon A. (2005): Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41: W07025. https://doi.org/10.1029/2004WR003801
 
Pourmalekshah A.A.M.A., Moayeri M.H., Parsakhoo A. (2019): Effect of the root biotechnical characteristics of Alnus subcordata, Paulownia fortunei and Populus deltoides on the soil mechanics. Journal of Forest Science, 65: 283–290. https://doi.org/10.17221/55/2019-JFS
 
Rewald B., Meinen C., Trockenbrodt M., Ephrath J.E., Rachmilevitch S. (2012): Root taxa identification in plant mixtures – current techniques and future challenges. Plant and Soil, 359: 165–182. https://doi.org/10.1007/s11104-012-1164-0
 
Sanchez-Castillo L., Kubota T., Cantu-Silva I., Yañez-Diaz M., Pequeño-Ledezma M. (2017): Comparisons of the root mechanical properties of three native Mexican tree species for soil bioengineering practices. Botanical Sciences, 95: 259–269. https://doi.org/10.17129/botsci.802
 
Schmidt K.M., Roering J.J., Stock J.D., Dietrich W.E., Montgomery D.R., Schaub T. (2001): The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38: 995–1024. https://doi.org/10.1139/t01-031
 
Schoeneberger P.J. (2002): Field Book for Describing and Sampling Soils, Version 3.0. Lincoln, National Soil Survey Center, Natural Resources Conservation Service, U.S. Dept. of Agriculture: 300.
 
Schwarz M., Lehmann P., Or D. (2010): Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 35: 354–367. https://doi.org/10.1002/esp.1927
 
Schwarz M., Giadrossich F., Cohen D. (2013): Modeling root reinforcement using a root-failure Weibull survival function. Hydrology and Earth System Sciences, 17: 4367–4377. https://doi.org/10.5194/hess-17-4367-2013
 
Schwarz M., Rist A., Cohen D., Giadrossich F., Egorov P., Büttner D., Stolz M., Thormann J.-J. (2015): Root reinforcement of soils under compression. Journal of Geophysical Research: Earth Surface, 120: 2103–2120. https://doi.org/10.1002/2015JF003632
 
Shapiro S.S., Wilk M.B. (1965): An analysis of variance test for normality (complete samples). Biometrika, 52: 591–611. https://doi.org/10.1093/biomet/52.3-4.591
 
Stokes A., Ghani M.A., Salin F., Danjon F., Jeannin H., Berthier S., Kokutse A.D., Frochot H. (2007): Root morphology and strain distribution during tree failure on mountain slopes. In: Stokes A., Spanos I., Norris J.E., Cammeraat E. (eds): Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Dordrecht, Springer Netherlands: 165–173.
 
Sun H.-L., Li S.-C., Xiong W.-L., Yang Z.-R., Cui B.-S., Tao-Yang (2008): Influence of slope on root system anchorage of Pinus yunnanensis. Ecological Engineering, 32: 60–67. https://doi.org/10.1016/j.ecoleng.2007.09.002
 
Thomas R.E., Pollen-Bankhead N. (2010): Modeling root-reinforcement with a fiber-bundle model and Monte Carlo simulation. Ecological Engineering, 36: 47–61. https://doi.org/10.1016/j.ecoleng.2009.09.008
 
Vergani C., Graf F. (2016): Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective. Ecohydrology, 9: 830–842. https://doi.org/10.1002/eco.1686
 
Vergani C., Chiaradia E.A., Bischetti G.B. (2012): Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering, 46: 43–56. https://doi.org/10.1016/j.ecoleng.2012.04.036
 
Vergani C., Giadrossich F., Buckley P., Conedera M., Pividori M., Salbitano F., Rauch H.S., Lovreglio R., Schwarz M. (2017): Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides: A review. Earth-Science Reviews, 167: 88–102. https://doi.org/10.1016/j.earscirev.2017.02.002
 
Waisel Y., Eshel A., Kafkafi, U. (1991): Plant Roots: The Hidden Half. New York, Marcel Dekker, Inc: 948.
 
Waldron L.J. (1977): The shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal, 41: 843–849. https://doi.org/10.2136/sssaj1977.03615995004100050005x
 
Waldron L.J., Dakessian S. (1981): Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Science, 132: 427–435. https://doi.org/10.1097/00010694-198112000-00007
 
Watson A., Marden M., Rowan D. (1997): Root-wood strength deterioration in kanuka after clearfelling. New Zealand Journal of Forestry Science, 27: 205–215.
 
Yang Y., Chen L., Li N., Zhang Q. (2016): Effect of root moisture content and diameter on root tensile properties. PLoS ONE, 11: e0151791. https://doi.org/10.1371/journal.pone.0151791
 
Zavala-González R., Cantú-Silva I., Sánchez-Castillo L., González-Rodríguez H., Kubota T., Hasnawir (2019): Ten native tree species for potential use in soil bioengineering in northeastern Mexico. Botanical Sciences, 97: 291–300. https://doi.org/10.17129/botsci.2131
 
Zhang C., Chen L., Jiang J., Zhou S. (2012): Effects of gauge length and strain rate on the tensile strength of tree roots. Trees, 26: 1577–1584. https://doi.org/10.1007/s00468-012-0732-5
 
Zhang C.-B., Chen L.-H., Jiang J. (2014): Why fine tree roots are stronger than thicker roots: the role of cellulose and lignin in relation to slope stability. Geomorphology, 206: 196–202. https://doi.org/10.1016/j.geomorph.2013.09.024
 
Zhou W.-H., Qi X.-H. (2019): Root cohesion estimation of riparian trees based on model uncertainty characterization. Journal of Materials in Civil Engineering, 31: 04018389. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002600
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti