Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation

https://doi.org/10.17221/50/2020-JFSCitation:

Faramarzi H., Hosseini S.M., Pourghasemi H.R., Farnaghi M. (2021): Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation. J. For. Sci., 67: 87100.

download PDF

Forest fires are a major environmental issue because they are increasing as a consequence of climate change and global warming. The present study was aimed to model forest fire hazard using the ordered weighted averaging (OWA) multi-criteria evaluation algorithm and to determine the role of human, climatic, and environmental factors in forest fire occurrence within the Golestan National Park (GNP), Iran. The database used for the present study was created according to daily classification of climate changes, environmental basic maps, and human-made influential forest fire factors. In the study area, the forest fires were registered using GPS. Expert opinions were applied through the analytic hierarchy process (AHP) to determine the importance of effective factors. Fuzzy membership functions were used to standardize the thematic layers. The fire risk maps were prepared using different OWA scenarios for man-made, climatic, and environment factors. The findings revealed that roads (weight = 0.288), rainfalls (weight = 0.288), and aspects (weight = 0.255) are the major factors that contribute to the occurrence of forest fire in the study area. The forest fire maps prepared from different scenarios were validated using the relative operating characteristic (ROC) curve. Values of forest fire maps acquired from scenarios of human, environment, climate factors and their combination were 0.87, 0.731, 0.773 and 0.819, respectively.

References:
Akhani H. (1998): Plant biodiversity of Golestan National Park, Iran. Stapfia, 53: 1–412.
 
Akhani H., Ziegler H. (2002): Photosynthetic pathways and habitats of grasses in Golestan National Park (NE Iran), with an emphasis on the C4-grass dominated rock communities. Phytocoenologia, 32: 455–501. https://doi.org/10.1127/0340-269X/2002/0032-0455
 
Alexandridis A., Vakalis D., Siettos C.I., Bafas G.V. (2008): A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, 204: 191–201. https://doi.org/10.1016/j.amc.2008.06.046
 
Artés T., Cencerrado A., Cortés A., Margalef T., Rodríguez-Aseretto D., Petroliagkis T., San-Miguel-Ayanz J. (2014): Towards a dynamic data driven wildfire behavior prediction system at european level. Procedia Computer Science, 29: 1216–1226. https://doi.org/10.1016/j.procs.2014.05.109
 
Balzter H., Gerard F.F., George C.T., Rowland C.S., Jupp T.E., McCallum I., Shvidenko A., Nilsson S., Sukhinin A., Onuchin A. (2005): Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia. Geophysical Research Letters, 32. https://doi.org/10.1029/2005GL022526
 
Bengtsson J., Nilsson S.G., Franc A., Menozzi P. (2000): Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management, 132: 39–50. https://doi.org/10.1016/S0378-1127(00)00378-9
 
Bui D.T., Bui Q.-T., Nguyen Q.-P., Pradhan B., Nampak H., Trinh P.T. (2017): A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233: 32–44. https://doi.org/10.1016/j.agrformet.2016.11.002
 
Bui D.T., Van Le H., Hoang N.-D. (2018): GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecological Informatics, 48: 104–116. https://doi.org/10.1016/j.ecoinf.2018.08.008
 
Burgan R.E., Klaver R.W., Klaver J.M. (1998): Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire, 8: 159–170. https://doi.org/10.1071/WF9980159
 
Cantarello E., Newton A.C., Hill R.A., Tejedor-Garavito N., Williams-Linera G., López-Barrera F., Manson R.H., Golicher D.J. (2011): Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes. Ecological Modelling, 222: 1112–1128. https://doi.org/10.1016/j.ecolmodel.2010.12.019
 
Chapin III F.S., Rupp T.S., Starfield A.M., DeWilde L.-o., Zavaleta E.S., Fresco N., Henkelman J., McGuire A.D. (2003): Planning for resilience: modeling change in human–fire interactions in the Alaskan boreal forest. Frontiers in Ecology and the Environment, 1: 255–261. https://doi.org/10.1890/1540-9295(2003)001[0255:PFRMCI]2.0.CO;2
 
Demir M., Kucukosmanoglu A., Hasdemir M., Acar H., Ozturk T. (2009): Assessment of forest roads and firebreaks in Turkey. African Journal of Biotechnology, 8.
 
Eastmam J. (1997): Idrisi for Windows: User’s Guide; Version 2.0. Worcester, Clark University.
 
Eastman J.R. (1999): Guide to GIS and Image Processing. Volume 1. Clark Labs, Clark University.
 
Eker M., Oguz Coban H. (2010): Impact of road network on the structure of a multifunctional forest landscape unit in southern Turkey. Journal of Environmental Biology, 31: 157.
 
Faramarzi H., Hosseini S.M., Ghajar I., Gholamalifard M. (2014): Fire risk modeling using discriminant analysis and adaptive network based fuzzy inference system in the Golestan National Park. Journal of Emergency Management, 3: 79–87.
 
Franklin J., McCullough P., Gray C. (2000): Terrain variables used for predictive mapping of vegetation communities in Southern California. In: Wilson J.P., Gallant J.C. (eds.): Terrain Analysis: Principles and Applications. New York, John Wiley & Sons.
 
Fuller D., Meijaard E., Christy L., Jessup T. (2010): Spatial assessment of threats to biodiversity within East Kalimantan, Indonesia. Applied Geography, 30: 416–425. https://doi.org/10.1016/j.apgeog.2009.11.004
 
Gandhi K.J., Spence J.R., Langor D.W., Morgantini L.E. (2001): Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Biological Conservation, 102: 131–141. https://doi.org/10.1016/S0006-3207(01)00099-4
 
Garcia-Jimenez S., Jurio A., Pagola M., De Miguel L., Barrenechea E., Bustince H. (2017): Forest fire detection: A fuzzy system approach based on overlap indices. Applied Soft Computing, 52: 834–842. https://doi.org/10.1016/j.asoc.2016.09.041
 
Geneletti D., van Duren I. (2008): Protected area zoning for conservation and use: A combination of spatial multicriteria and multiobjective evaluation. Landscape and Urban Planning, 85: 97–110. https://doi.org/10.1016/j.landurbplan.2007.10.004
 
Ghoddousi S., Pintassilgo P., Mendes J., Ghoddousi A., Sequeira B. (2018): Tourism and nature conservation: A case study in Golestan National Park, Iran. Tourism Management Perspectives, 26: 20–27. https://doi.org/10.1016/j.tmp.2017.12.006
 
Glickman D., Babbitt B. (2001): Urban wildland interface communities within the vicinity of federal lands that are at high risk from wildfire. Federal Register, 66: 751–777.
 
Gonzalez-Alonso F., Cuevas J., Casanova J., Calle A., Illera P. (1997): A forest fire risk assessment using NOAA AVHRR images in the Valencia area, eastern Spain. International Journal of Remote Sensing, 18: 2201–2207. https://doi.org/10.1080/014311697217837
 
Gorsevski P.V., Donevska K.R., Mitrovski C.D., Frizado J.P. (2012): Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste Management, 32: 287–296. https://doi.org/10.1016/j.wasman.2011.09.023
 
Healey S.P., Urbanski S.P., Patterson P.L., Garrard C. (2014): A framework for simulating map error in ecosystem models. Remote Sensing of Environment, 150: 207–217. https://doi.org/10.1016/j.rse.2014.04.028
 
Holsten A., Dominic A.R., Costa L., Kropp J.P. (2013): Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management, 287: 123–131. https://doi.org/10.1016/j.foreco.2012.08.035
 
Hong H., Tsangaratos P., Ilia I., Liu J., Zhu A.-X., Xu C. (2018): Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the Total Environment, 630: 1044–1056. https://doi.org/10.1016/j.scitotenv.2018.02.278
 
Jaiswal R.K., Mukherjee S., Raju K.D., Saxena R. (2002): Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4: 1–10. https://doi.org/10.1016/S0303-2434(02)00006-5
 
Jiang H., Eastman J.R. (2000): Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14: 173–184. https://doi.org/10.1080/136588100240903
 
Kahraman C. (2008): Fuzzy Multi-criteria Decision Making: Theory and Applications with Recent Developments. Seattle, Springer Science & Business Media.
 
Kandya A., Kimothi M., Jadhav R., Agarwal J. (1998): Application of geographic information system in identification of ‘fire-prone ‘areas – A feasibility study in parts of Junagadh (Gujarat). Indian Forester, 124: 531–536.
 
Karnatak H.C., Saran S., Bhatia K., Roy P.S. (2007): Multicriteria spatial decision analysis in web GIS environment. Geoinformatica, 11: 407–429. https://doi.org/10.1007/s10707-006-0014-8
 
Keeley J.E., Keeley S.C. (1988): Chaparral. In: Barbour M.G., Billings W.D. (eds.): North American Terrestrial Vegetation. USGS: 165–207.
 
Kuhrt E., Knollenberg J., Mertens V. (2001): An automatic early warning system for forest fires. Annals of Burns and Fire Disasters, 14: 151–154.
 
Lin H., Liu X., Wang X., Liu Y. (2018): A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on rechargeable wireless sensor networks. Sustainable Computing: Informatics and Systems, 18: 101–111. https://doi.org/10.1016/j.suscom.2017.05.004
 
Malczewski J. (1999): GIS and Multicriteria Decision Analysis. New York, John Wiley & Sons.
 
Malczewski J. (2006): GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20: 703–726. https://doi.org/10.1080/13658810600661508
 
Miller J.D., Safford H.D., Welch K.R. (2016): Using one year post-fire fire severity assessments to estimate longer-term effects of fire in conifer forests of northern and eastern California, USA. Forest Ecology and Management, 382: 168–183. https://doi.org/10.1016/j.foreco.2016.10.017
 
Mokarram M., Hojati M. (2017): Using ordered weight averaging (OWA) aggregation for multi-criteria soil fertility evaluation by GIS (case study: Southeast Iran). Computers and Electronics in Agriculture, 132: 1–13. https://doi.org/10.1016/j.compag.2016.11.005
 
Moretti M., Obrist M.K., Duelli P. (2004): Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography, 27: 173–186. https://doi.org/10.1111/j.0906-7590.2004.03660.x
 
Murthy K.K., Sinha S.K., Kaul R., Vaidyanathan S. (2019): A fine-scale state-space model to understand drivers of forest fires in the Himalayan foothills. Forest Ecology and Management, 432: 902–911. https://doi.org/10.1016/j.foreco.2018.10.009
 
Pontius Jr, R.G., Schneider L. C. (2001): Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85: 239–248.
 
Pourtaghi Z.S., Pourghasemi H.R., Aretano R., Semeraro T. (2016): Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, 64: 72–84. https://doi.org/10.1016/j.ecolind.2015.12.030
 
Rahman S., Chang H.-C., Magill C., Tomkins K., Hehir W. (2018): Forest fire occurrence and modeling in Southeastern Australia. Forest Fire, Janusz Szmyt, IntechOpen.
 
Rinner C., Malczewski J. (2002): Web-enabled spatial decision analysis using Ordered Weighted Averaging (OWA). Journal of Geographical Systems, 4: 385–403. https://doi.org/10.1007/s101090300095
 
Rundel P., King J. (2001): Ecosystem processes and dynamics in the urban/wildland interface of Southern California. Journal of Mediterranean Ecology, 2: 209–220.
 
Saklani P. (2008) Forest Fire Risk Zonation: A Case Study Pauri Garhwal, Uttrakhand, India. [Ph.D. Thesis.] Indian Institute of Remote Sensing (NRSA) Dehradun.
 
Sarwar B., Bajwa I.S., Ramzan S., Ramzan B., Kausar M. (2018): Design and application of fuzzy logic based fire monitoring and warning systems for smart buildings. Symmetry, 10: 615. https://doi.org/10.3390/sym10110615
 
Shokri M., Safaian N., Atrakchali A. (2002): Investigation of the effects of fire on vegetation variations in Takhti Yeylagh-Golestan National Prak. Indian Journal of Natural Resources, 55: 273–281.
 
Smyth C.S. (1998): A representational framework for geographic modeling. In: Egenhofer M.J., Golledge R.G. (eds.): Spatial and Temporal Reasoning in Geographic Information Systems. Spatial Information Systems, Oxford University Press: 191–213.
 
Srivastava P.K., Petropoulos G.P., Gupta M., Singh S.K., Islam T., Loka D. (2019): Deriving forest fire probability maps from the fusion of visible/infrared satellite data and geospatial data mining. Modeling Earth Systems and Environment, 5: 627–643. https://doi.org/10.1007/s40808-018-0555-5
 
Sunlu U. (2003): Environmental impacts of tourism. In: Camarda D., Grassini L. (eds.): Local Resources and Global Trades: Environments and Agriculture in the Mediterranean Region. CIHEAM-IAMB: 263–270.
 
Swets J.A. (1988): Measuring the accuracy of diagnostic systems. Science, 240: 1285–1293. https://doi.org/10.1126/science.3287615
 
Tanskanen H., Venäläinen A., Puttonen P., Granström A. (2005): Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research, 35: 410–420. https://doi.org/10.1139/x04-188
 
Valente R.d.O.A., Vettorazzi C.A. (2008): Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecology and Management, 256: 1408–1417. https://doi.org/10.1016/j.foreco.2008.07.006
 
Whelan R.J. (1995) The Ecology of Fire. Cambridge, Cambridge University Press.
 
Wood L.J., Dragicevic S. (2007): GIS-based multicriteria evaluation and fuzzy sets to identify priority sites for marine protection. Biodiversity and Conservation, 16: 2539–2558. https://doi.org/10.1007/s10531-006-9035-8
 
Wu H. (2018): Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China. Environmental Science and Pollution Research, 25: 2231–2238. https://doi.org/10.1007/s11356-017-0675-x
 
Ying L., Han J., Du Y., Shen Z. (2018): Forest fire characteristics in China: Spatial patterns and determinants with thresholds. Forest Ecology and Management, 424: 345–354. https://doi.org/10.1016/j.foreco.2018.05.020
 
Zadeh L.A. (1965): Information and control. Fuzzy Sets, 8: 338–353.
 
Zipoli G., Costantini R., Romanelli S., Bottai L., Maselli F. (2000): Use of satellite and ancillary data for the evaluation of structural and meteorological forest fire risks in Tuscany (Central Italy). Florence, Proceedings of ECAC: 16–20.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti