Generalized height-diameter models for Fagus orientalis Lipsky in Hyrcanian forest, Iran K., Alavi S.J. (2016): Generalized height-diameter models for Fagus orientalis Lipsky in Hyrcanian forest, Iran. J. For. Sci., 62: 413-421.
download PDF

In this study, 39 generalized height-diameter prediction models were developed for Oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forest in Iran. Data were collected from 75 permanent sample plots in uneven-aged stands of F. orientalis. A total of 1,067 individual tree height-diameter measurements were available for this study. For model testing a 10-fold cross validation method was used. The goodness of fit of the models was evaluated using six statistical measures including Akaike information criteria, Bayesian information criterion, root mean square error (RMSE), mean error, R2 and R2adj. Results showed that the R2 ranged from 0.62 to 0.78 and RMSE from 3.3 to 4.7 in the validation phase. Considering all the performance criteria, a model which uses DBH, dominant height, basal area per hectare and number of trees per hectare was found to be the best model to predict the height of Oriental beech from these data.

Ahmadi K., Alavi S.J., Kouchaksaraei M.T., Aertsen W. (2013): Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran. Biotechnology, Agronomy, Society and Environment, 17: 431–440.
Bi Huiquan, Jurskis Vic, O'Gara Joseph (2000): Improving height prediction of regrowth eucalypts by incorporating the of site trees in a modified Chapman-Richards equation. Australian Forestry, 63, 257-266
Calama Rafael, Montero Gregorio (2004): Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 34, 150-163
Cañadas N., García C., Montero G. (1999): Relación altura-diámetro para Pinus pinea L. en el Sistema Central. In: Rojo Alboreca A., de Galicia X., Díaz-Maroto Hidalgo I.J., Álvarez González J.G., Barrio-Anta M., Castedo-Dorado F., Rigueiro Rodríguez A. (eds): Actas del Congreso de Ordenación y Gestión Sostenible de Montes I, Santiago de Compostela, Oct 4–9, 1999: 139–153.
Cimini Dora, Salvati Riccardo (2011): Comparison of generalised nonlinear height-diameter models for Pinus halepensis Mill. and Quercus cerris L. in Sicily (Southern Italy). L'Italia Forestale e Montana, , 395-400
COOMES DAVID A., ALLEN ROBERT B. (2007): Effects of size, competition and altitude on tree growth. Journal of Ecology, 95, 1084-1097
Cox F. (1994): Modelos parametrizados de altura. Informe de convenio de investigación interempresas. Santiago, INFORA: 28.
Crecente-Campo Felipe, Tomé Margarida, Soares Paula, Diéguez-Aranda Ulises (2010): A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259, 943-952
Diamantopoulou M. J., Özçelik R. (2012): Evaluation of different modeling approaches for total tree-height estimation in Mediterranean Region of Turkey. Forest Systems, 21, 383-
Eerikäinen Kalle (2003): Predicting the height–diameter pattern of planted Pinus kesiya stands in Zambia and Zimbabwe. Forest Ecology and Management, 175, 355-366
Ek Alan R. (1974): Nonlinear Models for Stand Table Projection in Northern Hardwood Stands. Canadian Journal of Forest Research, 4, 23-27
Fang Zixing, Bailey R.L. (1998): Height–diameter models for tropical forests on Hainan Island in southern China. Forest Ecology and Management, 110, 315-327
Gaffrey D. (1988): Forstamts- und bestandsindividuelles Sortimentierungsprogramm als Mittel zur Planung, Aushaltung und Simulation. [MSc Thesis.] Göttingen, University of Göttingen: 86.
Huang Jian-Guo, Stadt Kenneth J., Dawson Andria, Comeau Philip G., Auge Harald (2013): Modelling Growth-Competition Relationships in Trembling Aspen and White Spruce Mixed Boreal Forests of Western Canada. PLoS ONE, 8, e77607-
Huang Shongming, Price Daryl, J. Titus Stephen (2000): Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management, 129, 125-141
Huang Shongming, Titus Stephen J., Wiens Douglas P. (1992): Comparison of nonlinear height–diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22, 1297-1304
Hui G.Y., von Gadow K. (1993): Zur Entwicklung von Einheitshöhenkurven am Beispiel der Baumart Cunninghamia lanceolata. Allgemeine Forst- und Jagdzeitung, 164: 218–220.
Krisnawati Haruni, Wang Yue, Ades Peter K. (2010): Generalized Height-Diameter Models for Acacia mangium willd. Plantations In South Sumatra. Indonesian Journal of Forestry Research, 7, 1-19
Lappi J. (1997): A longitudinal analysis of height/diameter curves. Forest Science, 43: 555–570.
L�pez S�nchez Carlos A., Gorgoso Varela Javier, Castedo Dorado Fernando, Rojo Alboreca Alberto, Soalleiro Roque Rodr�guez, �lvarez Gonz�lez Juan Gabriel, S�nchez Rodr�guez Federico (2003): A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60, 237-245
Marshall D.D., Curtis R.O. (2002): Levels-of-growing-stock Cooperative Study in Douglas-fir: Report No. 15-Hoskins: 1963–1998. Portland, USDA Forest Service: 80.
Mønness E.N. (1982): Diameter Distributions and Height Curves in Even-aged Stands of Pinus sylvestris L. Report No. 36. Ås, Norwegian Forest Research Institute: 46.
Newton P.F., Amponsah I.G. (2007): Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. Forest Ecology and Management, 247, 149-166
Olson D.L., Delen D. (2008): Advanced Data Mining Techniques. Berlin, Heidelberg, Springer-Verlag: 179.
Peng C. (1999): Nonlinear Height-diameter Models for Nine Tree Species in Ontario Boreal Forests. Forest Research Report No. 155. Sault Ste. Marie, Ontario Forest Research Institute, Ontario Ministry of Natural Resources: 28.
Poorzady M, Bakhtiari F (2009): Spatial and temporal changes of Hyrcanian forest in Iran. iForest - Biogeosciences and Forestry, 2, 198-206
R Development Core Team (2013): R: A language and environment for statistical computing. Available at
Ratkowsky D.A. (1990): Handbook of Nonlinear Regression Models. New York, Marcel Dekker: 241.
Ritz C., Streibig J.C. (2008): Nonlinear Regression with R. New York, Springer-Verlag: 144.
Sánchez-González M., Cañellas I., Montero G. (2008): Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain. Forest Systems, 16: 76–88.
Schröder Jörg, Álvarez González Juan Gabriel (2001): Comparing the performance of generalized diameter-height equations for Maritime pine in Northwestern Spain. Forstwissenschaftliches Centralblatt, 120, 18-23
Sharma Mahadev, Parton John (2007): Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249, 187-198
Sharma Mahadev, Yin Zhang Shu (2004): Height–Diameter Models Using Stand Characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19, 442-451
Sloboda B., Gaffrey D., Matsumura N. (1993): Regionale und lokale Systeme von Höhenkurven für gleichaltrige Waldbestände. Allgemeine Forst- und Jagdzeitung, 164: 225–228.
Soares Paula, Tomé Margarida (2002): Height–diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management, 166, 99-109
Sonmez T. (2009): Generalized height-diameter models for Picea orientalis L. Journal of Environmental Biology, 30: 767–772.
Stankova T.V., Diéguez-Aranda U. (2013): Height-diameter relationships for Scots pine plantations in Bulgaria: Optimal combination of model type and application. Annals of Forest Research, 56: 149–163.
Staudhammer Christie, LeMay Valerie (2000): Height prediction equations using diameter and stand density measures. The Forestry Chronicle, 76, 303-309
Temesgen H., v. Gadow K. (2004): Generalized height?diameter models?an application for major tree species in complex stands of interior British Columbia. European Journal of Forest Research, 123, 45-51
Temesgen H., Hann D.W., Monleon V.J. (2007): Regional height-diameter equations for major tree species of southwest Oregon. Western Journal of Applied Forestry, 22: 213–219.
Temesgen H., Zhang C.H., Zhao X.H. (2014): Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316, 78-89
Tewari Vindhya, Álvarez-gonzález Juan, García Oscar (2014): Developing a dynamic growth model for teak plantations in India. Forest Ecosystems, 1, 9-
von Gadow K., Real P., Álvarez-González J.G. (eds) (2001): Modelización del crecimiento y la evolución de bosques. IUFRO World Series. Vol. 12. Vienna, IUFRO: 242.
Wykoff W.R., Crookston N.L., Stage A.R. (1982): User’s Guide to the Stand Prognosis Model. General Technical Report INT-122. Ogden, USDA Forest Service: 119.
download PDF

© 2020 Czech Academy of Agricultural Sciences