Prevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services

https://doi.org/10.17221/5/2021-JFSCitation:

Sacchelli S., Borghi C., Grilli G. (2021): Prevention of erosion in mountain basins: A spatial-based tool to support payments for forest ecosystem services. J. For. Sci., 67: 258–271.

download PDF

This paper presents a spatial-based decision support system (DSS) to assist public and private forest managers in the analysis of potential feasibility in payments for forest ecosystem services (PES) for the prevention of soil erosion. The model quantifies the maximum willingness to pay (WTP) of managers of a reservoir to prevent soil loss. The minimum willingness to accept (WTA) of forest owners for the activation of a private market is also computed. The comparison of WTP and WTA identifies the forest area where PES are ideally feasible with additional potential for compensation to enable the schemes. The DSS highlights forest idiosyncrasies as well as local socio-economic and geomorphological characteristics influencing PES suitability at a geographic level. The potential applications and future improvements of the model are also discussed.

References:
Adger W.N., Brown K., Cervigni R., Moran. D. (1995): Total economic value of forests in Mexico. Ambio, 24: 286–296.
 
Alarcon G.G., Fantini A.C., Salvador C.H., Farley J. (2017): Additionality is in detail: Farmers’ choices regarding payment for ecosystem services programs in the Atlantic forest, Brazil. Journal of Rural Studies, 54: 177–186. https://doi.org/10.1016/j.jrurstud.2017.06.008
 
Alves B., Rigall-I-Torrent R., Ballester R., Benavente J.,
 
Ferreira O. (2015): Coastal erosion perception and willingness to pay for beach management (Cadiz, Spain). Journal of Coastal Conservation, 19: 269–280. https://doi.org/10.1007/s11852-015-0388-6
 
Asrat P., Belay K., Hamito D. (2004): Determinants of warmers’ willingness to pay for soil conservation practices in the southeastern highlands of Ethiopia. Land Degradation and Development, 15: 423–438. https://doi.org/10.1002/ldr.623
 
Borrelli P., Schütt B. (2014): Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy. Geomorphology, 204: 412–424. https://doi.org/10.1016/j.geomorph.2013.08.022
 
Borrelli P., Panagos P., Märker M., Modugno S., Schütt B. (2017): Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena, 149: 770–781. https://doi.org/10.1016/j.catena.2016.02.017
 
Brey R., Riera P., Mogas J. (2007): Estimation of forest values using choice modeling: An application to Spanish forests. Ecological Economics, 64: 305–312. https://doi.org/10.1016/j.ecolecon.2007.07.006
 
Colombo S., Hanley N., Calatrava-Requen J. (2005): Designing policy for reducing the off-farm effects of soil erosion using choice experiments. Journal of Agricultural Economics, 56: 81–95. https://doi.org/10.1111/j.1477-9552.2005.tb00123.x
 
Coppini M., Hermanin L. (2007): Restoration of selective beech coppices: A case study in the Apennines (Italy). Forest Ecology and Management, 249: 18–27. https://doi.org/10.1016/j.foreco.2007.04.035
 
Cotler H. Ortega-Larrocea M.P. (2006): Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena, 65: 107–117. https://doi.org/10.1016/j.catena.2005.11.004
 
De Rosa P., Cencetti C., Fredduzzi A. (2016): A GRASS tool for the Sediment Delivery Ratio mapping. PeerJ Preprints, 4: e2227v1.
 
Didoné E.J., Gomes Minella J.P., Evrard O. (2017): Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil. Soil and Tillage Research, 174: 24–33. https://doi.org/10.1016/j.still.2017.05.011
 
Dribek A., Voltaire L. (2017): Contingent valuation analysis of willingness to pay for beach erosion control through the stabiplage technique: A study in Djerba (Tunisia). Marine Policy, 86: 17–23. https://doi.org/10.1016/j.marpol.2017.09.003
 
Engel S., Pagiola S., Wunder S. (2008): Designing payments for environmental services in theory and practice: An overview of the issues. Ecological Economics, 65: 663–674. https://doi.org/10.1016/j.ecolecon.2008.03.011
 
Enriquez-Acevedo T., Botero C.M., Cantero-Rodelo R., Pertuz A., Suarez A. (2018): Willingness to pay for Beach Ecosystem Services: The case study of three Colombian beaches. Ocean & Coastal Management, 161: 96–104.
 
Faustmann M. (1849): On the determination of the value which forestland and immature stands pose for forestry. Reprinted in Journal of Forest Economics, 1: 7–44.
 
Förstner U., Salomons W. (2010): Sediment research, management and policy: A decade of JSS. Journal of Soils and Sediments, 10: 1440–1452. https://doi.org/10.1007/s11368-010-0310-7
 
Gaglioppa P., Guadagno R., Marino D., Marucci A., Palmieri M., Pellegrino D., Schirpke U., Caracausi C. (2017): Forest management based on ecosystem services and payments for ecosystem services: considerations after the project LIFE+ Making Good Natura. Forest@ – Journal of Silviculture and Forest Ecology, 14: 99–106.
 
GRASS Development Team (2019): GRASS GIS 7.6.2dev Reference Manual. Available at: https://grass.osgeo.org/grass76/manuals/index.html (Accessed March 2, 2020).
 
Grilli G., Ciolli M., Garegnani G., Geri F., Sacchelli S., Poljanec A., Vettorato D., Paletto A. (2017): A method to assess the economic impacts of forest biomass use on ecosystem services in a National Park. Biomass and Bioenergy, 98: 252–263. https://doi.org/10.1016/j.biombioe.2017.01.033
 
Grilli G., Fratini R., Marone E., Sacchelli S. (2020): A spatial-based tool for the analysis of payments for forest ecosystem services related to hydrogeological protection. Forest Policy and Economics, 111: 102039. https://doi.org/10.1016/j.forpol.2019.102039
 
Haines-Young R., Potschin M. (2012): Common International Classification of Ecosystem Services. CICES. Version 4.1. Available at: https://cices.eu/ (Accessed March 2, 2020).
 
Hausknost D., Grima N., Singh S.J. (2017): The political dimensions of Payments for Ecosystem Services (PES): Cascade or stairway? Ecological Economics, 131: 109–118. https://doi.org/10.1016/j.ecolecon.2016.08.024
 
Havinga I., Hein L., Vega-Araya M., Languillaume A. (2020): Spatial quantification to examine the effectiveness of payments for ecosystem services: A case study of Costa Rica’s Pago de Servicios Ambientales. Ecological Indicators, 108: 105766. https://doi.org/10.1016/j.ecolind.2019.105766
 
Jones K.W., Cannon J.B., Saavedra F.A., Kampf S.K., Addington R.N., Cheng A.S., MacDonald L.H., Wilson C., Wolk B. (2017). Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado. Journal of Environmental Management, 198: 66–77. https://doi.org/10.1016/j.jenvman.2017.05.023
 
Jones-Walters L., Mulder I. (2009): Valuing nature: The economics of biodiversity. Journal for Nature Conservation, 17: 245–247. https://doi.org/10.1016/j.jnc.2009.06.001
 
Lang A.J., Aust W.M., Bolding M.C., McGuire K.J., Schilling E.B. (2017): Comparing sediment trap data with erosion models for evaluation of forest haul road stream crossing approaches. Transactions of the ASABE, 60: 393–408.
 
Lu Y., He T. (2014): Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model. Science of the Total Environment, 493: 1056–1064. https://doi.org/10.1016/j.scitotenv.2014.06.096
 
Maltsev K., Yermolaev O. (2020): Assessment of soil loss by water erosion in small river basins in Russia. Catena, 195: 104726. https://doi.org/10.1016/j.catena.2020.104726
 
Marchi M., Paletto A., Cantiani P., Bianchetto E., De Meo I. (2018): Comparing thinning system effects on ecosystem services provision in artificial black pine (Pinus nigra J.F. Arnold) forests. Forests, 9: 188. https://doi.org/10.3390/f9040188
 
MEA (2005): Ecosystem and Human Well-Being: Biodiversity Synthesis. Washington D.C., World Resources Institute: 86.
 
Merlo M. (1991): Elementi di economia ed estimo forestale–ambientale. Bologna, Pàtron Editore: 545. (in Italian)
 
Nasiri M. (2013): GIS modelling for locating the risk zone of soil erosion in a deciduous forest. Journal of Forest Science, 59: 87–91. https://doi.org/10.17221/71/2012-JFS
 
Palmieri M., Gaglioppa P., Guadagno R., Marino D., Marucci A., Pellegrino D., Picchi S. (2014): Modello dimostrativo di valutazione dell’efficacia di gestione. Report del progetto Making Good Natura (LIFE+11 ENV/IT/000168). Rome, CURSA: 129. (in Italian)
 
Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. (2015a): The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54: 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
 
Panagos P., Borrelli P., Meusburger K., Alewell C., Lugato E., Montanarella L. (2015b): Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48: 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
 
Paudyal K., Baral H., Bhandari S.P., Bhandari A., Keenan R.J. (2019): Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosystem Services, 36: 100895. https://doi.org/10.1016/j.ecoser.2019.100895
 
Phan T.H.D., Brouwer R., Hoang L.P., Davidson M.D. (2017): A comparative study of transaction costs of payments for forest ecosystem services in Vietnam. Forest Policy and Economics, 80: 141–149. https://doi.org/10.1016/j.forpol.2017.03.017
 
Ranjan R. (2019): A forestry-based PES mechanism for enhancing the sustainability of Chilika Lake through reduced siltation loading. Forest Policy and Economics, 106: 101944. https://doi.org/10.1016/j.forpol.2019.06.001
 
Sacchelli S., Zambelli P., Zatelli P., Ciolli M. (2013): Biomasfor: An open-source holistic model for the assessment of sustainable forest bioenergy. iForest – Biogeosciences and Forestry, 6: 285–293. https://doi.org/10.3832/ifor0897-006
 
Sacchelli S., Cipollaro M., Fabbrizzi S. (2018): A GIS-based model for multiscale forest insurance analysis: The Italian case study. Forest Policy and Economics, 92: 106–118. https://doi.org/10.1016/j.forpol.2018.04.011
 
Sacchelli S., Carrari E., Paoletti E., Anav A., Hoshika Y., Sicard P., Screpanti A., Chirici G., Cocozza C., De Marco A. (2021): Economic impacts of ambient ozone pollution on wood production in Italy. Scientific Reports, 11: 154. https://doi.org/10.1038/s41598-020-80516-6
 
Schmidt M.R., Wei W. (2006): Loss of agro-biodiversity, uncertainty and perceived control: A comparative risk perception study in Austria and China. Risk Analysis, 26: 455–470. https://doi.org/10.1111/j.1539-6924.2006.00744.x
 
Smith S., Rowcroft P., Everard M., Couldrick L., Reed M., Rogers H., Quick T., Eves C., White C. (2013): Payments for Ecosystem Services: A Best Practice Guide. London, Department for Environment, Food & Rural Affairs of the UK: 85.
 
Sone J.S., Gesualdo G.C., Zamboni P.A.P., Vieira N.O.M., Mattos T.S., Carvalho G.A., Rodrigues D.B.B., Sobrinho T.A., Oliveira P.T.S. (2019): Water provisioning improvement through payment for ecosystem services. Science of the Total Environment, 655: 1197–1206. https://doi.org/10.1016/j.scitotenv.2018.11.319
 
Stone R.P., Hilborn D. (2001): Universal Soil Loss Equation, USLE. Ontario. Ministry of Agriculture, Food and Rural Affairs. Available at: http://www.omafra.gov.on.ca/english/engineer/facts/12-051.htm
 
Wunder S. (2005): Payments for environmental services: Some nuts and bolts. CIFOR, 9. Available at: https://vtechworks.lib.vt.edu/handle/10919/66932
 
Yoo J., Simonit S., Connors J.P., Kinzig A.P., Perrings C. (2014): The valuation of off-site ecosystem service flows: Deforestation, erosion and the amenity value of lakes in Prescott, Arizona. Ecological Economics, 97: 74–83. https://doi.org/10.1016/j.ecolecon.2013.11.001
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti