Parameterisation of allometric equations for quantifying aboveground biomass of Norway spruce (Picea abies (L.) H. Karst.) in the Czech Republic

https://doi.org/10.17221/61/2017-JFSCitation:Čihák T., Vejpustková M. (2018): Parameterisation of allometric equations for quantifying aboveground biomass of Norway spruce (Picea abies (L.) H. Karst.) in the Czech Republic. J. For. Sci., 64: 108-117.
supplementary materialdownload PDF

The aim of the present study was to develop allometric equations for predicting aboveground biomass of Norway spruce (Picea abies (Linnaeus) H. Karsten) applicable to the typically managed spruce forest on acidic and nutrient-medium sites in the Czech Republic. The models were based on an extensive data set of 139 spruce trees collected in 25 stands on 15 sites. The biomass in dry mass was modelled using linear regression equations with one (diameter at breast height – D), two (D, slenderness ratio – H/D) or three (D, H/D, site index – SI, or tree age – A) predictors. The models were validated using the leave-one-out method. The value of the root mean square error of cross-validation was chosen as the main criterion for the best-model selection. Both the total aboveground biomass and stem biomass were best predicted by three-variable models (D, H/D, SI). For crown and foliage biomass the simple one-variable model (D) is recommended.

References:
Achat D.L., Deleuze C., Landmann G., Pousse N., Ranger J., Augusto L. (2015): Quantifying consequences of removing harvesting residues on forest soils and tree growth – A meta-analysis. Forest Ecology and Management, 348, 124-141  https://doi.org/10.1016/j.foreco.2015.03.042
 
Akselsson Cecilia, Westling Olle, Sverdrup Harald, Holmqvist Johan, Thelin Gunnar, Uggla Eva, Malm Gunnar (2007): Impact of Harvest Intensity on Long-Term Base Cation Budgets in Swedish Forest Soils. Water, Air, & Soil Pollution: Focus, 7, 201-210  https://doi.org/10.1007/s11267-006-9106-6
 
Arlot Sylvain, Celisse Alain (2010): A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40-79  https://doi.org/10.1214/09-SS054
 
Augusto Laurent, Ranger Jacques, Ponette Quentin, Rapp Maurice (2000): Relationships between forest tree species, stand production and stand nutrient amount. Annals of Forest Science, 57, 313-324  https://doi.org/10.1051/forest:2000122
 
Baskerville G. L. (1972): Use of Logarithmic Regression in the Estimation of Plant Biomass. Canadian Journal of Forest Research, 2, 49-53  https://doi.org/10.1139/x72-009
 
Černý Martin (1990): Biomass of picea abies (L.) Karst. in midwestern bohemia. Scandinavian Journal of Forest Research, 5, 83-95  https://doi.org/10.1080/02827589009382595
 
Černý M., Pařez J., Malík Z. (1996): Růstové a taxační tabulky hlavních dřevin České republiky. Jílové u Prahy, IFER – Ústav pro výzkum lesních ekosystémů, s.r.o.: 245.
 
Chojnacky D. C., Heath L. S., Jenkins J. C. (2014): Updated generalized biomass equations for North American tree species. Forestry, 87, 129-151  https://doi.org/10.1093/forestry/cpt053
 
Christoforou Elias A., Fokaides Paris A. (2014): A Review of Quantification Practices for Plant-Derived Biomass Potential. International Journal of Green Energy, 12, 368-378  https://doi.org/10.1080/15435075.2014.880147
 
Chroust L., Tesařová J. (1985): Quantification of above-ground components of 20 years old Norway spruce (Picea abies /L./ Karsten). Communicationes Instituti Forestalis Čechosloveniae, 14: 111–126.
 
Čihák T., Vejpustková M., Šrámek V., Marušák R. (2012): Vyhodnocení alometrických funkcí pro stanovení nadzemní biomasy smrku ztepilého (Picea abies /L./ Karst.) z oblasti Orlických hor. Zprávy lesnického výzkumu, 57: 257–265. (with English abstract)
 
Čihák T., Hlásny T., Stolariková R., Vejpustková M., Marušák R. (2014): Functions for the aboveground woody biomass in small-leaved lime (Tilia cordata Mill.). Lesnícky časopis – Forestry Journal, 60: 150–158.
 
Di Cosmo Lucio, Gasparini Patrizia, Tabacchi Giovanni (2016): A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. Forest Ecology and Management, 361, 269-276  https://doi.org/10.1016/j.foreco.2015.11.008
 
Eckmüllner O. (2006): Allometric relations to estimate needle and branch mass of Norway spruce and Scots pine in Austria. Austrian Journal of Forest Science, 123: 7–16.
 
Henry Matieu, Picard Nicolas, Trotta Carlo, Manlay Raphaël, Valentini Riccardo, Bernoux Martial, Saint-André Laurent (2011): Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fennica, 45, -  https://doi.org/10.14214/sf.38
 
Hochbichler E., Bellos P., Lick E. (2006): Biomass functions for estimating needle and branch biomass of spruce (Picea abies) and Scots pine (Pinus sylvestris) and branch biomass of beech (Fagus sylvatica) and oak (Quercus robur and petraea). Austrian Journal of Forest Science, 123: 35–46.
 
IPCC (2006): IPCC Guidelines for National Greenhouse Gas Inventories. Hayama, Institute for Global Environmental Strategies: 12.
 
Jenkins J.C., Chojnacky D.C., Heath L., Birdsey R.A. (2003): National-scale biomass estimators for United States tree species. Forest Science, 49: 12–35.
 
Kaila A., Laurén A., Sarkkola S., Koivusalo H., Ukonmaanaho L., O’Driscoll C., Xiao L., Asam Z., Nieminen M. (2015): Effect of clear-felling and harvest residue removal on nitrogen and phosphorus export from drained Norway spruce mires in southern Finland. Boreal Environment Research, 20: 693–706.
 
Krtková E., Troeva Grozeva D., Beck M. (eds) (2016): National Greenhouse Gas Inventory Report of the Czech Republic (Reported Inventories 1990–2014). Prague, Czech Hydrometeorological Institute: 423.
 
Ledermann T., Neumann M. (2006): Biomass equations from data of old long-term experimental plots. Austrian Journal of Forest Science, 123: 47–64.
 
Lehtonen Aleksi, Cienciala Emil, Tatarinov Fedor, Mäkipää Raisa (2007): Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 64, 133-140  https://doi.org/10.1051/forest:2006097
 
Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004): Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188, 211-224  https://doi.org/10.1016/j.foreco.2003.07.008
 
Levy P.E. (2004): Biomass expansion factors and root : shoot ratios for coniferous tree species in Great Britain. Forestry, 77, 421-430  https://doi.org/10.1093/forestry/77.5.421
 
Marklund L.G. (1987): Biomass Functions for Norway Spruce (Picea abies (L.) Karst.) in Sweden. Umeå, Swedish University of Agricultural Sciences: 127.
 
Muukkonen P. (2007): Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126, 157-166  https://doi.org/10.1007/s10342-007-0168-4
 
NFI (2016): Výstupy národní inventarizace lesů uskutečněné v letech 2011–2015. Věková struktura lesa. Brandýs nad Labem, Ústav pro hospodářskou úpravu lesů: 222.
 
Novák J., Dušek D., Kacálek D., Slodičák M. (2015): Parametry stability různě vychovávaných smrkových porostů. Zprávy lesnického výzkumu, 60: 177–187. (with English abstract)
 
Pajtík Jozef, Konôpka Bohdan, Lukac Martin (2008): Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256, 1096-1103  https://doi.org/10.1016/j.foreco.2008.06.013
 
Parresol B.R. (1999): Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science, 45: 573–593.
 
Petersson Hans, Holm Sören, Ståhl Göran, Alger David, Fridman Jonas, Lehtonen Aleksi, Lundström Anders, Mäkipää Raisa (2012): Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass – A comparative study. Forest Ecology and Management, 270, 78-84  https://doi.org/10.1016/j.foreco.2012.01.004
 
Repola Jaakko (2009): Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica, 43, -  https://doi.org/10.14214/sf.184
 
Somogyi Z., Cienciala E., Mäkipää R., Muukkonen P., Lehtonen A., Weiss P. (2007): Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126, 197-207  https://doi.org/10.1007/s10342-006-0125-7
 
Šrámek V., Lomský B., Novotný R. (2009): Hodnocení obsahu a zásoby živin v lesních porostech – literární přehled. Zprávy lesnického výzkumu, 54: 307–315. (with English abstract)
 
Světlík J., Krejza J., Menšík L., Pokorný R., Mazal P., Kulhavý J. (2016): Sekvestrace uhlíku smrkovým porostem (Picea abies (L.) Karst.) v oblasti Drahanské vrchoviny. Zprávy lesnického výzkumu, 61: 42–53. (with English abstract)
 
Ung Chhun-Huor, Bernier Pierre, Guo Xiao-Jing (2008): Canadian national biomass equations: new parameter estimates that include British Columbia data. Canadian Journal of Forest Research, 38, 1123-1132  https://doi.org/10.1139/X07-224
 
Vejpustková M., Čihák T., Šrámek V. (2017): Kvantifikace nadzemní biomasy smrku ztepilého (Picea abies (L.) Karst.). Lesnický průvodce 3/2017. Jíloviště-Strnady, VÚLHM: 27.
 
Vinš B., Šika A. (1975): Biomasa nadzemních a podzemních částí vzorníků smrku. Dílčí závěrečná zpráva. Jíloviště-Strnady, VÚLHM: 38.
 
Vyskot M. (1976): Tree Story Biomass in Lowland Forests in South Moravia. Prague, Academia: 166.
 
Vyskot M. (1991): Nadzemní biomasa adultní populace smrku ztepilého (Picea abies (L.) Karst.). Lesnictví, 37: 509–527.
 
Wirth C., Schumacher J., Schulze E.-D. (2004): Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24, 121-139  https://doi.org/10.1093/treephys/24.2.121
 
Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Helsinki, The Finnish Society of Forest Science, The Finnish Forest Research Institute: 63.
 
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti