Influence of site conditions and silvicultural practice on the wood density of Scots pine (Pinus sylvestris L.) – a case study from the Doksy locality, Czech Republicönfelder O., Zeidler A., Borůvka V., Bílek L. (2017): Influence of site conditions and silvicultural practice on the wood density of Scots pine (Pinus sylvestris L.) – a case study from the Doksy locality, Czech Republic. J. For. Sci., 63: 457-462.
download PDF
After spruce, the Scots pine (Pinus sylvestris Linnaeus) is the second most important commercial coniferous tree species in the Czech Republic. However, we are finding out that awareness of the variability of properties, and possibilities to affect them, are noticeably small for this type of tree species in our conditions. The goal of this study is to primarily evaluate the importance of site conditions, silvicultural measures and other factors for the density of Scots pine wood in the Doksy locality in the Czech Republic. The Doksy locality is represented by three forest stands with different silvicultural history. Samples were taken from each stand, the basal and central parts of which were subsequently processed for test samples with dimensions of 20 × 20 × 30 mm. Wood density at 12% moisture content was ascertained in the test samples. The highest density value of 0.541 g·cm–3 was reached in a stand that is regenerated using the shelterwood method with long regeneration period, and the lowest density value of 0.488 g·cm–3 was recorded in a stand that was regenerated using the clear-cutting method. From a forestry perspective, it can be further stated that the wood density of Scots pine is also affected by the site conditions and position of samples in the trunk.
Auty D., Achim A., Macdonald E., Cameron A. D., Gardiner B. A. (2014): Models for predicting wood density variation in Scots pine. Forestry, 87, 449-458
Eriksson Daniel, Lindberg Henrik, Bergsten Urban (2006): Influence of silvicultural regime on wood structure characteristics and mechanical properties of clear wood in Pinus sylvestris. Silva Fennica, 40, -
Fellner J., Teischinger A., Zschokke W. (2007): Spektrum dřevin: vyobrazení, popis a srovnávací údaje. Vienna, proHolz Austria: 111.
Fritts HC, Vaganov EA, Sviderskaya IV, Shashkion AV (1991): Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Climate Research, 1, 97-116
Hautamäki S., Kilpeläinen H., Verkasalo E. (2014): Factors and models for the bending properties of sawn timber from Finland and north-western Russia. Part II: Scots pine. Baltic Forestry, 20: 142–156.
Ivković Miloš, Gapare Washington, Wu Harry, Espinoza Sergio, Rozenberg Philippe (2013): Influence of cambial age and climate on ring width and wood density in Pinus radiata families. Annals of Forest Science, 70, 525-534
Jelonek T., Pazdrowski W., Tomczak A., Grzywiński W. (2012): Biomechanical stability of pines growing on former farmland in northern Poland. Wood Research, 57: 31–44.
Jelonek T., Pazdrowski W., Tomczak A., Szaban J. (2008): The effect of social position of a tree in the stand and site on wood quality of scots pine (Pinus sylvestris L.). Electronic Journal of Polish Agricultural Universities, 11: 10.
Jelonek T., Tomczak A., Jakubowski M., Pazdrowski W. (2005): Properties of Scots pine (Pinus sylvestris L.) timber growing on former arable and forest land. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 4: 35–47.
Jozsa L.A., Middleton G.R. (1994): A Discussion of Wood Quality Attributes and Their Practical Implications. Vancouver, Forintek Canada Corporation: 42.
Kask R. (2015): The influence of growth conditions on physico-mechanical properties of Scots pine (Pinus sylvestris L.) wood in Estonia. [Ph.D. Thesis.] Tartu, Institute of Forestry and Rural Engineering: 164.
Kimberley Mark O., Cown Dave J., McKinley Russell B., Moore John R., Dowling Leslie J. (2015): Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine. New Zealand Journal of Forestry Science, 45, -
Kollmann F. (1951): Technologie des Holzes und der Holzwerkstoffe. Berlin, Heidelberg, Springer-Verlag: 1050.
Kretschmann D.E., Moody R.C., Pellerin R.F., Bendtsen B.A., Cahill J.M., McAlister R.H., Sharp D.W. (1993): Effect of Various Proportions of Juvenile Wood on Laminated Veneer Lumber. Madison, USDA Forest Service, Forest Products Laboratory: 31.
Lexa J., Nečesaný V., Paclt J., Tesařová M., Štofko J. (1952): Technológia dreva I. Mechanické a fyzikálne vlastnosti dreva. Bratislava, Práca: 436.
MacDonald E., Moore J., Connolly T., Gardiner B. (2010): Assessing timber quality of Scots pine (Pinus sylvestris L.). In: Ridley-Ellis D.J., Moore J.R. (eds): The Future of Quality Control for Wood and Wood Products, Edinburgh, May 4–7, 2010: 180–190.
Mederski P.S., Bembenek M., Karaszewski Z., Giefing D.F., Sulima-Olejniczak E., Rosińska M., Łącka A. (2015): Density and mechanical properties of Scots pine (Pinus sylvestris L.) wood from a seedling seed orchard. Drewno, 58: 117–124.
Ministry of Agriculture of the Czech Republic (2016): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2015. Available at (accessed Dec 17, 2016).
M�rling Tommy (2002): Evaluation of annual ring width and ring density development following fertilisation and thinningof Scots pine. Annals of Forest Science, 59, 29-40
Nicholls J.W.P., Brown A.G. (1973): The relationship between ring width and wood characteristics in double-stemmed trees of radiata pine. New Zealand Journal of Forestry Science, 4: 105–111.
Novák V. (1970): Dřevařská technická příručka. Prague, Státní nakladatelství technické literatury: 748.
Peltola Heli, Kilpeläinen Antti, Sauvala Kari, Räisänen Tommi, Ikonen Veli-Pekka (2007): Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica, 41, -
Požgaj A., Chovanec D., Kurjatko S., Babiak M. (1997): Štruktúra a vlastnosti dreva. Bratislava, Príroda: 485.
Repola Jaakko (2006): Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fennica, 40, -
Riesco Muñoz Guillermo, Soilán Cañas María A., Roíguez Soalleiro Roque (2008): Physical properties of wood in thinned Scots pines (Pinus sylvestris L.) from plantations in northern Spain. Annals of Forest Science, 65, 507-507
Roszyk E., Moliński W., Kusiak W., Prądzyński W., Zborowska M. (2016): Physical properties of Scots pine wood from the Notecka Forest. Sylwan, 160: 547–555.
Šimůnková E., Kučerová I. (2000): Dřevo. Prague, Stop: 134.
Tomczak Arkadiusz, Jelonek Tomasz (2013): Radial variation in the wood properties of Scots pine (Pinus sylvestris L.) grown on former agricultural soil. Forest Research Papers, 74, -
Tomczak A., Jelonek T., Jakubowski M. (2013): Density of scots pine (Pinus sylvestris L.) wood as an indicator of tree resistance to strong winds. Sylwan, 157: 539–545.
Tomczak Arkadiusz, Pozdrowski Witold, Jelonek Tomasz, Stypuła Ireneusz (2011): Vertical variability of selected macrostructural properties of juvenile wood organization in trunks of Scots pine (Pinus sylvestris L.) trees. Acta Societatis Botanicorum Poloniae, 76, 27-33
Tsoumis G. (1991): Science and Technology of Wood: Structure, Properties, Utilization. New York, Chapman and Hall: 494.
Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 74–82.
Wagenführ R. (2002): Dřevo – obrázkový lexikon. Prague, Grada Publishing, a.s.: 348.
download PDF

© 2020 Czech Academy of Agricultural Sciences