Work sampling and work process optimization in sonic and electrical resistance tree tomography

https://doi.org/10.17221/66/2019-JFSCitation:Baláš M., Gallo J., Kuneš I. (2020): Work sampling and work process optimization in sonic and electrical resistance tree tomography. J. For. Sci., 66: 9-21.
download PDF

Using non-destructive techniques in investigating tree stem rots is a modern approach in arboriculture and urban forestry. We used PiCUS® 3 Sonic tomograph (SoT) and TreeTronic® electrical resistance tomograph (ERT) to inspect the health status of urban and park trees. The process of setting up the device and measuring is time demanding as it requires numerous delicate operations. The aim of the study was to evaluate the time needed for measurement and to propose an optimal workflow. The results of work sampling suggest that scanning of one average-difficulty tree by SoT and ERT resistance tomography takes an average approximately 52 min (when one operator measures one scan), and approx. 37 min (when two operators measure a queue of trees). Working in two-person-team is moderately more efficient. Typically, the overall costs of one scan are approximately EUR 25–30 (~ CZK 650–780), depending on many variables.

References:
Arciniegas A., Prieto F., Brancheriau L., Lasaygues P. (2014): Literature review of acoustic and ultrasonic tomography in standing trees. Trees, 28: 1559–1567. https://doi.org/10.1007/s00468-014-1062-6
 
Arciniegas A., Brancheriau L., Lasaygues P. (2015): Tomography in standing trees: revisiting the determination of acoustic wave velocity. Annals of Forest Science, 72: 685–691. https://doi.org/10.1007/s13595-014-0416-y
 
Argus Electronic (2013): PiCUS Tree Inspection Equipment. Argus Electronic GmbH. Available at http://www.argus-electronic.de/en/tree-inspection/support/pdf-archive/picus-tree-inspection-equipment-at-a-glance-english (accessed Jun 31, 2018).
 
Baláš M., Kuneš I., Šrenk M., Koňasová T. (2011): Časová a pracovní náročnost výsadby prostokořenných odrostků listnatých dřevin v horských polohách. Zprávy lesnického výzkumu, 56: 235–243.
 
Bieker D., Rust S. (2010): Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.). Silva Fennica, 44: 267–273.  https://doi.org/10.14214/sf.153
 
Brazee N.J., Marra R.E., Göcke L., van Wassenaer P. (2011): Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry, 84: 33–39. https://doi.org/10.1093/forestry/cpq040
 
CSO (2019): Average wages – 3rd quarter of 2018. Quick information, code: 110031-18. Czech Statistical Office, Prague. Available at https://www.czso.cz/csu/czso/ari/average-wages-3-quarter-of-2018 (accessed Feb 7, 2019).
 
Deflorio G., Fink S., Schwarze F.W. (2008): Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Science and Technology, 42: 117–132. https://doi.org/10.1007/s00226-007-0159-0
 
Ellis D., Ellis T. (2013): Tree tomography – From a consulting arborist’s perspective: Part 1. Western Arborist, 39: 46–52.
 
Ellis D., Ellis T. (2014): Tree tomography – From a consulting arborist’s perspective: Part 2. Western Arborist, 40: 53–55.
 
Feng H., Li G., Wang X. (2014): Tomographic image reconstruction using an interpolation method for tree decay detection. BioResources, 9: 3248–3263. https://doi.org/10.15376/biores.9.2.3248-3263
 
Gallo J., Baláš M., Nováková O., Kuneš I. (2014): The use of sonic and electrical impedance tomography for identification of internal tree defects. In: Štefančík I. (ed.): Proceedings of Central European Silviculture: Silviculture in Central Europe. Zvolen, Národné lesnícke centrum, September 8–10, 2014: 150–156.
 
Gilbert G.S., Ballesteros J.O., Barrios-Rodriguez C.A., Bonadies E.F., Cedeño-Sánchez M.L., Fossatti-Caballero N.J., Trejos-Rodríguez M.M., Pérez-Suñiga J.M., Holub-Young K.S., Henn L.A.W., Thompson J.B., García-López C.G., Romo A.C., Johnston D.C., Barrick P.B., Jordan F.A., Hershcovich S., Russo N., Sánchez J.D., Fábrega J.P., Lumpkin R., McWilliams H.A., Chester K.N., Burgos A.C., Wong E.B., Diab J.H., Renteria S.A., Harrower J.T., Hooton D.A., Glenn T.C., Faircloth B.C., Hubbell S.P. (2016): Use of sonic tomography to detect and quantify wood decay in living trees. Applications in Plant Sciences, 4(12): 1600060. https://doi.org/10.3732/apps.1600060
 
Gilbert E.A., Smiley E.T. (2004): Picus Sonic Tomography for the quantification of decay in white oak (Quercus alba) and Hickory (Carya spp.). Journal of Arboriculture, 30: 277–281.
 
Göcke L., Rust S., Weihs U., Günther T., Rücker C. (2008): Combining sonic and electrical impedance tomography for the nondestructive testing of trees. Western Arborist, 34: 1–11.
 
Göcke L. (2017): PiCUS Sonic Tomograph. Software Manual Q74. Manual version: February 1st, 2017. Argus Electronic GmbH, 92 p. Available at http://www.argus-electronic.de/en/tree-inspection/support/pdf-archive/picus-sonic-tomograph-manual-of-pc-software-q74-release-date-february-1st-2017 (accessed Jul 31, 2018).
 
Grabowski J., Pempera J. (2000): Sequencing of jobs in some production system. European Journal of Operational Research, 125: 535–550. https://doi.org/10.1016/S0377-2217(99)00224-6
 
Guyot A., Ostergaard K.T., Lenkopane M., Fan J., Lockington D.A. (2013): Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers. Tree Physiology, 33: 187–194. https://doi.org/10.1093/treephys/tps128
 
Heikura T., Terho M., Perttunen J., Sievänen R. (2008): A computer-based tool to link decay information to 3D architecture of urban trees. Urban Forestry and Urban Greening, 7: 233–239. https://doi.org/10.1016/j.ufug.2008.07.001
 
Helliwell D.R. (2007): A short note on effects of boring holes in trees. Arboricultural Journal, 30: 245–248. https://doi.org/10.1080/03071375.2007.9747499
 
Humplík P., Čermák P., Žid T. (2016): Electrical impedance tomography for decay diagnostics of Norway spruce (Picea abies): possibilities and opportunities. Silva Fennica, 50: 1, article id 1341. https://doi.org/10.14214/sf.1341
 
Kazemi-Najafi S., Shalbafan A., Ebrahimi G. (2009): Internal decay assessment in standing beech trees using ultrasonic velocity measurement. European Journal of Forest Research, 128: 345–350. https://doi.org/10.1007/s10342-009-0269-3
 
Koeser A.K., Hauer R.J., Klein R.W., Miesbauer J.W. (2017): Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban Forestry and Urban Greening, 24: 71–79. https://doi.org/10.1016/j.ufug.2017.03.024
 
Leong E.-Ch., Burcham D.C., Fong Y.-K. (2012): A purposeful classification of tree decay detection tools. Arboricultural Journal, 34: 91–115. https://doi.org/10.1080/03071375.2012.701430
 
Li G., Wang X., Feng H., Wiedenbeck J., Ross R.J. (2014): Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection. Computers and Electronics in Agriculture, 104: 32–39. https://doi.org/10.1016/j.compag.2014.03.008
 
Lin Ch.-J., Yang T.-H. (2015): Detection of acoustic velocity and electrical resistance tomographies for evaluation of peripheral-inner wood demarcation in urban royal palms. Urban Forestry and Urban Greening, 14: 583–589. https://doi.org/10.1016/j.ufug.2015.05.010
 
MoLSA (2019): Informace o minimální mzdě od 1. ledna 2019 (Information about minimal wage from January 1st, 2019). Ministry of Labour and Social Affairs of the Czech Republic, Prague. Available at https://www.mpsv.cz/files/clanky/34725/Informace_o_MMe_od_1_ledna_2019_na_web_MPSV.pdf. (accessed February 7, 2019).
 
Nicolotti G., Socco L.V., Martinis R., Godio A., Sambuelli L. (2003): Application and comparison of three tomographic techniques for detection of decay in trees. Journal of Arboriculture, 29: 66–78.
 
Niemtur S., Chomicz E., Kapsa M. (2014): Occurrence of the silver fir (Abies alba Mill.) butt rot in protected areas. Leśne Prace Badawcze, 75: 343–352.
 
Oh J.K., Lee J.J. (2014): Feasibility of ultrasonic spectral analysis for detecting insect damage in wooden cultural heritage. Journal of Wood Science, 60: 21–29. https://doi.org/10.1007/s10086-013-1370-2
 
Ostrovský R., Kobza M., Gažo J. (2017): Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery. Trees, 31: 1015–1023. https://doi.org/10.1007/s00468-017-1526-6
 
Rabe C., Ferner D., Fink S., Schwarze F.W.M.R. (2004): Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboricultural Journal, 28: 3–19. https://doi.org/10.1080/03071375.2004.9747399
 
Raz T., Barnes R., Dvir D. (2003): A critical look at critical chain project management. Project Management Journal, 34: 24–32. https://doi.org/10.1177/875697280303400404
 
Rand G.K. (2000): Critical chain: the theory of constraints applied to project management. International Journal of Project Management, 18: 173–177. https://doi.org/10.1016/S0263-7863(99)00019-8
 
Ross R.J. (Ed.) (2015): Nondestructive evaluation of wood. General Technical Report FPL-GTR-238. Madison, WI: U.S., Department of Agriculture, Forest Service, Forest Products Laboratory.
 
Unterwieser H., Schickhofer G. (2011): Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency- and ultrasonic runtime measurement. European Journal of Wood and Wood Products, 69: 171–181. https://doi.org/10.1007/s00107-010-0417-y
 
Wang X., Allison R.B. (2008): Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture and Urban Forestry, 34: 1–4.
 
Wang X., Wiedenbeck J., Liang S. (2009): Acoustic tomography for decay detection in black cherry trees. Wood and Fiber Science, 41: 127–137.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti