Effects of some properties of cedar forest soils on secondary roots of Cedrus atlantica Manetti

https://doi.org/10.17221/69/2018-JFSCitation:El Amrani B., Bendriss Amraoui M. (2018): Effects of some properties of cedar forest soils on secondary roots of Cedrus atlantica Manetti. J. For. Sci., 64: 506-513.
download PDF

The effect of textural and physicochemical characteristics of five cedar forest soils on 4- and 8-month-old seedlings of Cedrus atlantica Manetti was studied in a controlled growth chamber. During their growth, cedar seedlings show a change in the root architecture by the levels of Corg, N, P, and by the soil granulometry. The Tioumlilin soil conditions stimulate mainly the cumulative length and the number of secondary roots. However, the cedar forest soil of Tazekka predominates over most soils in its effect on growth by the balance of chemical elements and the high percentage of coarse particles. The analysis of the densities of secondary and tertiary roots and the cumulative length of secondary roots show four different root architectural development strategies of C. atlantica seedlings which may justify the low level of mycorrhization on young seedlings in the natural cedar forest soil. The variations of the root architectural parameters of C. atlantica seedlings are discussed in relation to the characteristics of cedar forest soils.

References:
Berthelot M. (1859): Violet d’aniline. Répertoire de chimie appliquée No. 1. Paris, Société Chimique de Paris: 284.
 
Boukcim Hassan, Mousain Daniel (2001): Effets de la fertilisation phosphat�e sur la mycorhization, la croissance et la nutrition en phosphore et en azote de semis de C�dre ( Cedrus atlantica Manetti) inocul�s en p�pini�re par Tricholoma tridentinum Sing. var. cedretorum Bon. Annals of Forest Science, 58, 289-300 https://doi.org/10.1051/forest:2001127
 
Boukcim Hassan, Plassard Claude (2003): Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families ofPicea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. Journal of Plant Physiology, 160, 1211-1218 https://doi.org/10.1078/0176-1617-00973
 
Boukcim H., Pages L., Plassard C., Mousain D. (2001): Root system architecture and receptivity to mycorrhizal infection in seedlings of Cedrus atlantica as affected by nitrogen source and concentration. Tree Physiology, 21, 109-115 https://doi.org/10.1093/treephys/21.2-3.109
 
BOUYOUCOS GEORGE JOHN (1927): THE HYDROMETER AS A NEW METHOD FOR THE MECHANICAL ANALYSIS OF SOILS. Soil Science, 23, 343-354 https://doi.org/10.1097/00010694-192705000-00002
 
Cordell Dana, Drangert Jan-Olof, White Stuart (2009): The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292-305 https://doi.org/10.1016/j.gloenvcha.2008.10.009
 
Courbet F., Lagacherie M., Marty P., Ladier J., Ripert C., Amandier L., Paillassa E., Guillemot J. (2012): Le cèdre en France face au changement climatique: un projet pour un bilan et un transfert des connaissances. Forêt Entreprise No. 204: 41–45.
 
Dexter A.R. (2004): Soil physical quality. Geoderma, 120, 201-214 https://doi.org/10.1016/j.geoderma.2003.09.004
 
FAN Wei-guo, YANG Hong-qiang (2007): Nutrient Deficiency Affects Root Architecture of Young Seedlings of Malus hupehensis (Pamp) Rehd. Under Conditions of Artificial Medium Cultivation. Agricultural Sciences in China, 6, 296-303 https://doi.org/10.1016/S1671-2927(07)60048-0
 
Forde B., Lorenzo H. (2002): The nutritional control of root development. In: Powlson D.S., Bateman G.L., Davies K.G., Gaunt J.L., Hirsch P.R. (eds): Interactions in the Root Environment: An Integrated Approach. Dordrecht, Springer Netherlands: 51–68.
 
Fukaki Hidehiro, Tasaka Masao (2009): Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437-449 https://doi.org/10.1007/s11103-008-9417-2
 
Gaba-Chahboub Hamida, Lamhamedi Mohammed S., Abrous-Belbachir Ouzna (2017): EFFET DE L’INOCULATION ECTOMYCORHIZIENNE EN PÉPINIÈRE SUR LA CROISSANCE ET LA NUTRITION DES PLANTS DU CÈDRE DE L’ATLAS EN ALGÉRIE. BOIS & FORETS DES TROPIQUES, 330, 57- https://doi.org/10.19182/bft2016.330.a31319
 
Kaushal Parvinder, Aussenac Gilbert (1989): Transplanting shock in Corsican pine and Cedar of Atlas seedlings: Internal water deficits, growth and root regeneration. Forest Ecology and Management, 27, 29-40 https://doi.org/10.1016/0378-1127(89)90080-7
 
Kjeldahl J. (1883): Neue Methode zur Bestimmung des Stickstoffs in organischen K�rpern. Zeitschrift f�r Analytische Chemie, 22, 366-382 https://doi.org/10.1007/BF01338151
 
Li Zhigang, Schneider Rebecca L., Morreale Stephen J., Xie Yingzhong, Li Changxiao, Li Jian (2018): Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma, 310, 143-152 https://doi.org/10.1016/j.geoderma.2017.09.009
 
Lipiec Jerzy, Horn Rainer, Pietrusiewicz Jacek, Siczek Anna (2012): Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, 121, 74-81 https://doi.org/10.1016/j.still.2012.01.013
 
M’hirit O. (1994): Le cèdre de l’Atlas (Cedrus atlantica Manetti) présentation générale et état des connaissances à travers le réseau Silva Méditerranea. Annales de la recherche forestière au Maroc, 27: 3–21.
 
MØLLER ANDERS L. B., PEDAS PAI, ANDERSEN BIRGIT, SVENSSON BIRTE, SCHJOERRING JAN K., FINNIE CHRISTINE (2011): Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell & Environment, 34, 2024-2037 https://doi.org/10.1111/j.1365-3040.2011.02396.x
 
Muday G.K., Rahman A., Binder B.M. (2012): Auxin and ethylene: Collaborators or competitors? Trends in Plant Science, 17: 181–195.
 
Murphy J., Riley J.P. (1962): A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
 
Nezzar-Hocine H., Perrin R., Halli-Hargas R., Chevalier G. (1998): Ectomycorrhizal associations with Cedrus atlantica (Endl) Manetti ex Carrière. I. Mycorrhizal synthesis with Tricholoma tridentinum Singer var. cedretorum Bon. Mycorrhiza, 8, 47-51 https://doi.org/10.1007/s005720050210
 
Ralph Steven G, Chun Hye Jung E, Cooper Dawn, Kirkpatrick Robert, Kolosova Natalia, Gunter Lee, Tuskan Gerald A, Douglas Carl J, Holt Robert A, Jones Steven JM, Marra Marco A, Bohlmann Jörg (2008): Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics, 9, 57- https://doi.org/10.1186/1471-2164-9-57
 
Richard G., Cousin I., Sillon J. F., Bruand A., Guerif J. (2001): Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. European Journal of Soil Science, 52, 49-58 https://doi.org/10.1046/j.1365-2389.2001.00357.x
 
Richardson Alan E., Hocking Peter J., Simpson Richard J., George Timothy S. (2009): Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60, 124- https://doi.org/10.1071/CP07125
 
Šmilauerová Marie, Šmilauer Petr (2002): Morphological responses of plant roots to heterogeneity of soil resources. New Phytologist, 154, 703-715 https://doi.org/10.1046/j.1469-8137.2002.00416.x
 
Sreenivasulu N., Harshavardhan V.T., Govind G., Seiler C., Kohli A. (2012): Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506: 265–273.
 
‘t Lam G.P., Giraldo J.B., Vermuë M.H., Olivieri G., Eppink M.H.M., Wijffels R.H. (2016): Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans. Journal of Biotechnology, 225, 10-17 https://doi.org/10.1016/j.jbiotec.2016.03.009
 
Tracy Saoirse R., Black Colin R., Roberts Jeremy A., Dodd Ian C., Mooney Sacha J. (2015): Using X-ray Computed Tomography to explore the role of abscisic acid in moderating the impact of soil compaction on root system architecture. Environmental and Experimental Botany, 110, 11-18 https://doi.org/10.1016/j.envexpbot.2014.09.003
 
Walch-Liu Pia, Liu Lai-Hua, Remans Tony, Tester Mark, Forde Brian G. (2006): Evidence that l -Glutamate Can Act as an Exogenous Signal to Modulate Root Growth and Branching in Arabidopsis thaliana. Plant and Cell Physiology, 47, 1045-1057 https://doi.org/10.1093/pcp/pcj075
 
WALKLEY ALLAN (1947): A CRITICAL EXAMINATION OF A RAPID METHOD FOR DETERMINING ORGANIC CARBON IN SOILS—EFFECT OF VARIATIONS IN DIGESTION CONDITIONS AND OF INORGANIC SOIL CONSTITUENTS. Soil Science, 63, 251-264 https://doi.org/10.1097/00010694-194704000-00001
 
Wu P. (2003): Phosphate Starvation Triggers Distinct Alterations of Genome Expression in Arabidopsis Roots and Leaves. PLANT PHYSIOLOGY, 132, 1260-1271 https://doi.org/10.1104/pp.103.021022
 
Yao Yinan, Sun Haiyan, Xu Fangsen, Zhang Xuejiang, Liu Shengyi (2011): Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta, 233, 523-537 https://doi.org/10.1007/s00425-010-1311-x
 
ZHANG Yu, YU Peng, PENG Yun-Feng, LI Xue-Xian, CHEN Fan-Jun, LI Chun-Jian (2012): Fine Root Patterning and Balanced Inorganic Phosphorus Distribution in the Soil Indicate Distinctive Adaptation of Maize Plants to Phosphorus Deficiency. Pedosphere, 22, 870-877 https://doi.org/10.1016/S1002-0160(12)60073-3
 
Zhang Ziliang, Li Na, Xiao Juan, Zhao Chunzhang, Zou Tingting, Li Dandan, Liu Qing, Yin Huajun (2018): Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 119, 50-58 https://doi.org/10.1016/j.soilbio.2018.01.002
 
Zine El Abidine A., Lamhamedi M.S., Taoufik A. (2014): Relations hydriques des arbres sains et dépérissants de Cedrus atlantica M. au Moyen Atlas Tabulaire au Maroc. Geo-Eco-Trop, 37: 157–176.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences