Dynamics of mixed lowland forests in Central Bohemia over a 20-year period

https://doi.org/10.17221/6/2020-JFSCitation:Prokůpková A. (2020): Dynamics of mixed lowland forests in Central Bohemia over a 20-year period. J. For. Sci., 66: 49-62.
download PDF

The paper deals with the effect of environmental factors and management on various mixed lowland forests in the Medník National Natural Monument, Czech Republic, over a 20-year period. The objectives were to evaluate the structure, production, dynamics and radial growth in relation to climatic conditions in the mixed hornbeam-oak, herb-rich beech and spruce forest stands. The tree density decreased by 8.5% (to 120–1,364 trees·ha–1), while stand volume increased by 28.0% (to 244–767 m3·ha–1) from 1998 to 2018. Large-leaved lime (Tilia platyphyllos Scop.) and Norway spruce (Picea abies /L./ Karst.) showed high variability and sensitivity to climatic factors in radial growth compared to stability and resistance in sessile oak (Quercus petraea /Matt./ Liebl.) and European beech (Fagus sylvatica L.). April, June and July were determined as the most significant months in relation to diameter increment. The synergism of precipitation deficit and high air temperature was a limiting factor of growth in the studied lowland area. The frequency of negative pointer years with extremely low radial growth has been increasing recently. Generally, hornbeam-oak stands are characterized by rich structure, high density and lower productivity, herb-rich beech stands represent rich structured productive forests and spruce forests are very productive stands but with low ecological stability.

References:
Adams H.D., Guardiola-Claramonte M., Barron-Gafford G.A., Villegas J.C., Breshears D.D., Zou C.B., Troch P.A., Huxman T.E. (2009): Temperature sensitivity of droughtinduced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 106: 7063–7066. https://doi.org/10.1073/pnas.0901438106
 
Ambrož R., Vacek S., Vacek Z., Král J., Štefančík I. (2015): Current and simulated structure, growth parameters and regeneration of beech forests with different game management in the Lány Game Enclosure. Forestry Journal, 61: 78–88. https://doi.org/10.1515/forj-2015-0016
 
Anderegg W.R.L., Martinez-Vilalta J., Cailleret M., Camarero J.J., Ewers B.E., Galbraith D., Gessler A., Grote R., Huang C., Levick S.R., Powell T.L., Rowland L., Sánchez-Salguero R., Trotsiuk V. (2016): When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. Ecosystems, 19: 1133–1147. https://doi.org/10.1007/s10021-016-9982-1
 
Andreassen K., Solberg S., Tveito O.E., Lystad S.L. (2006): Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecology and Management, 222: 211–221. https://doi.org/10.1016/j.foreco.2005.10.029
 
Babst F., Poulter B., Trouet V., Tan K., Neuwirth B., Wilson R., Carrer M., Grabner M., Tegel W., Levanič T., Panayotov M., Urbinati C., Bouriaud O., Ciais P., Frank D. (2013): Site- and species-specific responses of forest growth to chmate across the European continent. Global Ecology and Biogeography, 22: 706–717. https://doi.org/10.1111/geb.12023
 
Beniston M. (2004): The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters, 31: 2022–2026. https://doi.org/10.1029/2003GL018857
 
Bílek L., Remeš J., Podrázský V., Rozenbergar D., Diaci J., Zahradník D. (2014): Gap regeneration in near-natural European beech forest stands in Central Bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology, 71: 59–71.
 
Bílek L., Vacek S., Vacek Z., Remeš J., Král J., Bulušek D., Galo J. (2016): How close to nature is close-to-nature pine silviculture? Journal of Forest Science, 62: 24–34. https://doi.org/10.17221/98/2015-JFS
 
Bílek L., Vacek Z., Vacek S., Bulušek D., Linda R., Král J. (2018): Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration?. Forest systems, 27: 6. https://doi.org/10.5424/fs/2018272-12408
 
Biondi F., Waikul K. (2004): Dendroclim 2002: AC++ program for statistical calibration of climate signals in tree ring chronologie. Computational Geosciences, 30: 303–311. https://doi.org/10.1016/j.cageo.2003.11.004
 
Bittner S., Talkner U., Krämer I., Beese F., Hölscher D., Priesack E. (2010): Modeling stand water budgets of mixed temperate broad-leaved forest stands by considering variations in species specific drought response. Agricultural and Forest Meteorology, 150: 1347–1357. https://doi.org/10.1016/j.agrformet.2010.06.006
 
Bolte A., Hilbrig L., Grundmann B., Kampf F., Brunet J., Roloff A. (2010): Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce–beech forest. European Journal Forest Research, 129: 261–276. https://doi.org/10.1007/s10342-009-0323-1
 
Bosela M., Štefančík I., Petráš R., Vacek S. (2016): The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology, 222: 21–31. https://doi.org/10.1016/j.agrformet.2016.03.005
 
Brassard B. W., Chen H. Y., Cavard X., Laganière J., Reich P. B., Bergeron Y., Paré D., Yuan, Z. (2013): Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 101: 210–219. https://doi.org/10.1111/1365-2745.12023
 
Bréda N., Huc R., Granier A., Dreyer E. (2006): Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63: 625–644. https://doi.org/10.1051/forest:2006042
 
Bulušek D., Vacek Z., Vacek S., Král J., Bílek L., Králíček I. (2016): Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. Journal of Forest Science, 62: 293–305. https://doi.org/10.17221/22/2016-JFS
 
Conte E., Lombardi F., Battipaglia G., Palombo C., Altieri S., La Porta N., Marchetti M., Tognetti R. (2018): Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). Forest Ecology and Management, 409: 707–718. https://doi.org/10.1016/j.foreco.2017.12.011
 
Cukor J., Vacek Z., Linda R., Bílek L. (2017a): Carbon sequestration in soil following afforestation of former agricultural land in the Czech Republic. Central European Forestry Journal, 63(2–3): 97–104. https://doi.org/10.1515/forj-2017-0011
 
Cukor J., Linhart L., Vacek Z., Baláš M., Linda R. (2017b): The Effects of Alginite Fertilization on Selected Tree Species Seedlings Performance on Afforested Agricultural Lands. Central European Forestry Journal, 63: 48–56. https://doi.org/10.1515/forj-2017-0001
 
Cukor J., Vacek Z., Linda R., Remeš J., Bílek L., Sharma R.P., Baláš M., Kupka I. (2017c): Effect of mineral eco-ferti-lizer on growth and mortality of young afforestations. Austrian Journal of Forest Science, 134: 367–386.
 
Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek S. (2019b): Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLOS One, 14: e0221082. https://doi.org/10.1371/journal.pone.0221082
 
Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. (2019a): Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests, 10: 320. https://doi.org/10.3390/f10040320
 
Cukor J., Zeidler A., Vacek Z., Vacek S., Šimůnek V., Gallo V. (2020): Comparison of growth and wood quality of Norway spruce and European larch: effect of previous land use. European Journal of Forest Research, online first. Available at https://link.springer.com/article/10.1007%2Fs10342-020-01259-7#citeas
 
Čater M., Diaci J. (2017): Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. Forest Ecology and Management, 399: 206–212. https://doi.org/10.1016/j.foreco.2017.05.042
 
Čufar K., Grabner M., Morgós A., Martínez del Castillo E., Merela M., de Luis M. (2014): Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees Structure and Function, 28: 1267–1277. https://doi.org/10.1007/s00468-013-0972-z
 
Fabrika M., Ďurský J. (2005): Stromové růstové simulátory. Zvolen, EFRA: 112. (in Czech)
 
Fonti P., Cherubini P., Rigling A., Weber P., Biging G. (2006): Tree rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes. Journal of Vegetation Science, 17: 103–112.
 
Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., Ruiz-Jaen M.C., Fröberg M., Stendahl J., Philipson C.D., Mikusiński G., Andersson E., Westerlund B., Andrén H., Moberg F., Moen J., Bengtsson J. (2013): Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4: 1340. https://doi.org/10.1038/ncomms2328
 
Götmark F. (2007): Careful partial harvesting in conservation stands and retention of large oaks favour oak regeneration. Biological Conservation, 140: 349–358. https://doi.org/10.1016/j.biocon.2007.08.018
 
Grissino-Mayer H.D., Holmes R.L., Fritts H.C. (1992): International tree-ring data bank program library: user,s manual. Tucson, Laboratory of Tree-Ring Research, University of Arizona: 104.
 
Guitián P., Medrano M., Guitián J. (2002): Seed dispersal in Erythronium dens-canis L. (Liliaceae): variation among habitats in a myrmecochorous plant. Plant Ecology, 169: 171–177. https://doi.org/10.1023/A:1026043411357
 
Hanewinkel M., Cullmann D.A., Schelhaas M.J., Nabuurs G.J., Zimmermann N.E. (2013): Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203–207. https://doi.org/10.1038/nclimate1687
 
Hauck M., Zimmermann J., Jacob M., Dulamsuren C., Bade C., Ahrends B., Leuschner C. (2012): Rapid recovery of stem increment in Norway spruce at reduced SO 2 levels in the Harz Mountains, Germany. Environmental Pollution, 164: 132–141. https://doi.org/10.1016/j.envpol.2012.01.026
 
Hlásny T., Turčáni M. (2013): Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Annals of Forest Science, 70: 481–491. https://doi.org/10.1007/s13595-013-0279-7
 
Hlásny T., Barka I., Kulla L., Bucha T., Sedmák R., Trombik J. (2017): Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Regional Environmental Change, 17: 65–77. https://doi.org/10.1007/s10113-015-0894-y
 
Holub J., Procházka F. (2000): Red list of vascular plants of the Czech Republic – 2000. Preslia, 72: 187–230.
 
Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R., Bucci S.J., Feild T.S., Gleason S.M., Hacke U.G., Jacobsen A.L., Lens F., Maherali H., Martínez-Vilalta J., Mayr S., Mencuccini M., Mitchell P.J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S., Westoby M., Wright I.J., Zanne A.E. (2012): Global convergence in the vulnerability of forests to drought. Nature, 491: 752–755. https://doi.org/10.1038/nature11688
 
Kern Z., Patkó M., Kázmér M., Fekete J., Kele S., Pályi Z. (2013): Multiple tree-ringproxies (earlywood width, latewood width and (13C) from pedunculate oak (Quercus robur L.)), Hungary. Quaternary International, 293: 257–267. https://doi.org/10.1016/j.quaint.2012.05.037
 
Knibbe B. (2007): PAST4: personal analysis system for treering research, Version 4.2. SCIEM, Vienna.
 
Kolář T., Čermák P., Oulehle F., Trnka M., Štěpánek P., Cudlín P., Hruška J., Büntgen U., Rybníček M. (2015): Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Science of the Total Environment, 538: 703–711. https://doi.org/10.1016/j.scitotenv.2015.08.105
 
Kolb T.E., Fettig Ch.J., Ayres M.P., Bentz B.J., Hicke J.A., Mathiasen R., Stewart J.E., Weed A.S. (2016): Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management, 380: 321–334. https://doi.org/10.1016/j.foreco.2016.04.051
 
Korpeľ Š. (1995): Die Urwälder der Westkarpaten, Stuttgart, Jena, New York, Gustav Fischer Verlag, 310 s.
 
Král J., Vacek S., Vacek Z., Putalová T., Bulušek D., Štefančík I. (2015): Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. Lesnícký časopis – Forestry Journal, 61: 175–187. https://doi.org/10.1515/forj-2015-0026
 
Králíček I., Vacek Z., Vacek S., Remeš J., Bulušek D., Král J., Štefančík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 119–137. https://doi.org/10.12657/denbio.077.010
 
Krejčí F., Vacek S., Bílek L., Mikeska M., Hejcmanová P., Vacek Z. (2013): The effects of climatic conditions and forest site types on disintegration rates in Picea abies occurring at the Modrava Peat Bogs in the Šumava National Park. Dendrobiology, 70: 35–44. https://doi.org/10.12657/denbio.070.004
 
Kunz J., Löffler G., Bauhus J. (2018): Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 414: 15–27. https://doi.org/10.1016/j.foreco.2018.02.016
 
Lévesque M., Saurer M., Siegwolf R., Eilmann B., Brang P., Bugmann H., Rigling A. (2013): Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Change Biology, 19: 3184–3199. https://doi.org/10.1111/gcb.12268
 
Lloret F., Escudero A., Iriondo J.M., Martínez-Vilalta J., Valladares F. (2012): Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 18: 797–805. https://doi.org/10.1111/j.1365-2486.2011.02624.x
 
Mäkinen H., Nöjd P., Mielikäinen K. (2001): Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce (Picea abies [L.] Karst.) in southern Finland. Trees, 15: 177–185. https://doi.org/10.1007/s004680100089
 
Marini L., Økland B., Jönsson A.M., Bentz B., Carroll A., Forster B., Grégoire J.C., Hurling R., Nageleisen L.M., Netherer S., Ravn H.P., Weed A., Schroeder M. (2017): Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 40: 1426–1435. https://doi.org/10.1111/ecog.02769
 
Matisons R., Elferts D., Brumelis G. (2013): Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur – Relation with chmate factors near its northern distribution limit. Dendrochronologia, 31: 129–139. https://doi.org/10.1016/j.dendro.2012.10.001
 
Mayer H., Ott E. (1991): Gebirgswaldbau, Schutzwaldpflege. Stuttgart, New York, Gustav Fischer Verlag: 587.
 
Mezei P., Jakuš R., Pennerstorfer J., Havašová M., Škvarenina J., Ferenčík J., Slivinský J., Bičárová S., Bilčík D., Blaženec M., Netherer S. (2017): Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – An infernal trio in Norway spruce forests of the Central European High Tatra Mountains, Agricultural and Forest Meteorology, 242: 85–95. https://doi.org/10.1016/j.agrformet.2017.04.004
 
Mikulenka P., Prokůpková A., Vacek Z., Vacek S., Bulušek D., Simon J., Šimůnek V., Hájek V. (2020): Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Central European Forestry Journal, 66: online first. Available at https://web.nlcsk.org/wp-content/uploads/2019/12/Mikulenka_etal.pdf https://doi.org/10.2478/forj-2019-0026
 
Millar C.I., Stephenson N.L. (2015): Temperate forest health in an era of emerging megadisturbance. Science, 349: 823–826. https://doi.org/10.1126/science.aaa9933
 
Mina M., del Río M., Huber M.O., Thürig E. Rohner B. (2018): The symmetry of competitive interactions in mixed Norway spruce, silver fir and European beech forests. Journal of Vegetation Science, 29: 775–787. https://doi.org/10.1111/jvs.12664
 
Müllerová J., Hédl R., Szabó P. (2015): Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecology and Management, 343: 88–100. https://doi.org/10.1016/j.foreco.2015.02.003
 
Nagel T.A., Mikac S., Dolinar M., Klopcic M., Keren S., Svoboda M., Diaci J., Boncina A., Paulic V. (2017): The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. Forest Ecology and Management, 388: 29–42. https://doi.org/10.1016/j.foreco.2016.07.047
 
Netsvetov M., Sergeyev M., Nikulina V., Korniyenko V., Prokopuk Y. (2017): The climate to growth relationships of pedunculate oak in steppe. Dendrochronologia, 44: 31–38. https://doi.org/10.1016/j.dendro.2017.03.004
 
Paillet Y., Bergès L., Hjältén J., Ódor, P., Avon, C., Bernhardt-Römermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Segastiá M.T., Schmidt W., Standovár T., Tothmérész B., Uotila A., Valladares F., Vellak K., Viranen R. (2010): Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conservation Biology, 24: 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x
 
Peters R.L., Groenendijk P., Vlam M., Zuidema P.A. (2015): Detecting long-termgrowth trends using tree rings: a critical evaluation of methods. Global Change Biology, 21: 2040–2054. https://doi.org/10.1111/gcb.12826
 
Petráš R., Pajtík J. (1991): Sústava česko-slovenských objemových tabuliek drevín. Lesnický časopis, 37: 49–56.
 
Ponocná T., Chuman T., Rydval M., Urban G., Migała K., Treml V. (2018): Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agricultural and Forest Meteorology, 253: 62–70. https://doi.org/10.1016/j.agrformet.2018.02.001
 
Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.P., Kohnle U., Nagel J., Spellmann H., Zasada M., Zingg A. (2013): Productivity of mixed versus pure stands of oak [Quercus petraea (Matt.) Liebl. and Quercus robur L.] and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132: 263–280. https://doi.org/10.1007/s10342-012-0673-y
 
Pretzsch H., Schütze G. (2014): Size-structure dynamics of mixed versus pure forest stands. Forest Systems, 23: 560–572. https://doi.org/10.5424/fs/2014233-06112
 
Pretzsch H., Biber P., Schütze G., Uhl E., Rötzer T. (2014): Forest stand dynamics in Central Europe has accelerated since 1870. Nature Communications, 5: 4967. https://doi.org/10.1038/ncomms5967
 
Primicia I., Camarero J. J., Janda P., Čada V., Morrissey R. C., Trotsiuk V., Bače R., Teodosiu M., Svoboda M. (2015): Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354: 77–86. https://doi.org/10.1016/j.foreco.2015.06.034
 
Průša E. (1985): Die böhmischen und mährischen Urwälder. Vegetace ČSSR, A15. Praha, Academia: 577.
 
Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and chmate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 64: 223–237.
 
Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456–464. https://doi.org/10.17221/75/2015-JFS
 
Ripley B.D. (1981): Spatial statistics. New York, John Wiley & Sons: 252.
 
Sádlo J. (2009): Erythronium dens-canis in Bohemia: can we accept its native origin? Zprávy České Botanické Společnosti, 44: 1–10.
 
Seidl R., Spies T.A., Peterson, D.L., Stephens S.L., Hicke J.A. (2016): Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 53: 120–129. https://doi.org/10.1111/1365-2664.12511
 
Sharma R.P., Vacek Z., Vacek S. (2016): Modelling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees – Structure and Function, 30: 1669–1682.
 
Sharma R.P., Vacek Z., Vacek S., Podrázský V., Jansa V. (2017): Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). PloS one, 12(10): e0186394.
 
Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. (1990): Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 8–38.
 
Slanař J., Vacek Z., Vacek S., Bulušek D., Cukor J., Štefančík I., Bílek L., Král J. (2017): Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: dynamics of natural regeneration. Central European Forestry Journal, 63: 212–224. https://doi.org/10.1515/forj-2017-0023
 
Szymura T.H., Szymura M., Pietrzak M. (2014): Influence of land relief and soil properties on stand structure of overgrown oak forests of coppice origin with Sorbus torminalis. Dendrobiology, 71: 49–58.
 
Šimůnek V., Vacek Z., Vacek S., Králíček I., Vančura K. (2019): Growth variability of European beech (Fagus sylvatica L.) natural forests: Dendroclimatic study from Krkonoše National Park. Central European Forestry Journal, 65: 92–102. https://doi.org/10.2478/forj-2019-0010
 
Štefančík I., Vacek Z., Sharma R.P., Vacek S., Rösslová M. (2018): Effect of thinning regimes on growth and development of crop trees in Fagus sylvatica stands of Central Europe over fifty years. Dendrobiology, 79: 141–155. https://doi.org/10.12657/denbio.079.013
 
Švec O., Bílek L., Remeš J., Vacek Z. (2015): Analysis of operational approach during forest transformation in Klokočná Range, Central Bohemia. Journal of Forest Science, 61: 148–155. https://doi.org/10.17221/102/2014-JFS
 
Toïgo M., Vallet P., Perot T., Bontemps J.D., Piedallu C., Courbaud B. (2015): Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103: 502–512. https://doi.org/10.1111/1365-2745.12353
 
Tolasz R., Míková T., Valeriánová T., Voženílek V. (eds.) (2007): Climate atlas of Czechia. Olomouc, Czech Hydrometeorological Institute and Palacký University: 256.
 
Urli M., Lamy J.B., Sin F., Burlett R., Delzon S., Porté A.J. (2015): The high vulnerability of Quercus robur to drought at its southern margin paves the wayfor Quercus ilex. Plant Ecology, 2: 177–187. https://doi.org/10.1007/s11258-014-0426-8
 
Vacek S. (2003): Minimum area of forest left to spontaneous development in protected areas. Journal of Forest Science, 49: 349–358. https://doi.org/10.17221/4709-JFS
 
Vacek S., Podrázský V., Hejcman M., Remeš J. (2006): Effect of Mg fertilization on yellowing disease of Norway spruce at higher elevations of the Šumava Mts., Czech Republic. Journal of Forest Science, 52: 474–481. https://doi.org/10.17221/4528-JFS
 
Vacek S., Vacek Z., Podrázský V., Bílek L., Bulušek D., Štefančík I., Remeš J., Štícha V., Ambrož R. (2014): Structural Diversity of Autochthonous Beech Forests in Broumovske Stěny National Nature Reserve, Czech Republic. Austrian Journal of Forest Science, 131: 191–214.
 
Vacek S., Vacek Z., Bílek L., Simon J., Remeš J., Hůnová I., Král J., Putalová T., Mikeska M. (2016): Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fennica, 50: 1564. https://doi.org/10.14214/sf.1564
 
Vacek S., Černý T., Vacek Z., Podrázský V., Mikeska M., Králíček I. (2017a): Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management, 398: 75–90. https://doi.org/10.1016/j.foreco.2017.05.001
 
Vacek S., Vacek Z., Remeš J., Bílek L., Hůnová I., Bulušek D., Putalová T., Král J., Simon J. (2017b): Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees – Structure and Function, 31: 1599–1617. https://doi.org/10.1007/s00468-017-1572-0
 
Vacek S., Prokůpková A., Vacek Z., Bulušek D., Šimůnek V., Králíček I., Praousová R., Hájek V. (2019b): Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. Journal of Forest Science, 65: 331–345. https://doi.org/10.17221/82/2019-JFS
 
Vacek S., Vacek Z., Ulbrichová I., Bulušek, D., Prokůpková A., Král J., Vančura K. (2019c): Biodiversity dynamics of differently managed lowland forests left to spontaneous development in Central Europe. Austrian Journal of Forest Science, 136: 249–281.
 
Vacek S., Vacek Z., Ulbrichová I., Remeš J., Podrázský V., Vach M., Bulušek D., Král J., Putalová T. (2019d): The effects of fertilization on the health status, nutrition and growth of Norway spruce forests with yellowing symptoms. Scandinavian Journal of Forest Research, 34: 267–281. https://doi.org/10.1080/02827581.2019.1589566
 
Vacek Z., Vacek S., Bílek L., Remeš J., Štefančík I. (2015a): Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology, 73: 33–45. https://doi.org/10.12657/denbio.073.004
 
Vacek Z., Vacek S., Podrazský V., Bílek L., Štefančík I., Moser W.K., Bulušek D., Král J., Remeš J., Králíček I. (2015b): Effect of tree layer and microsite on the variability of natural regeneration in autochthonous beech forests. Polish Journal of Ecology, 63: 233–246.  https://doi.org/10.3161/15052249PJE2015.63.2.007
 
Vacek Z., Vacek S., Podrázský V., Král J., Bulušek D., Putalová T., Baláš M., Kalousková I., Schwarz O. (2016): Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology, 75: 31–44. https://doi.org/10.12657/denbio.075.004
 
Vacek Z. (2017): Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlicke hory Mts. in relation to ungulate game. Central European Forestry Journal, 63: 23–34.  https://doi.org/10.1515/forj-2017-0006
 
Vacek Z., Vacek S., Bulušek D., Podrázský V., Remeš J., Král J., Putalová T. (2017c). Effect of fungal pathogens and climatic factors on production, biodiversity and health status of ash mountain forests. Dendrobiology, 77: 1755–1315. https://doi.org/10.12657/denbio.077.013
 
Vacek Z., Vacek S., Bílek L., Král J., Ulbrichová I., Simon J., Bulušek D. (2018): Impact of applied silvicultural systems on spatial pattern of hornbeam-oak forests. Central European Forestry Journal, 64: 33–45. https://doi.org/10.1515/forj-2017-0031
 
Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019a): Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129–144. https://doi.org/10.2478/forj-2019-0013
 
Veblen T.T. (1992): Regeneration dynamics. In: Glenn-Lewin D.C., Peet R.K., Veblen T.T. (Eds.): PlantSuccession, Theory and Prediction. London, Chapmann and Hall: 152–187.
 
Vitali V., Büntgen U., Bauhus J. (2018): Seasonality matters – The effects of past and projected seasonal climate change on the growth of native and exotic conifer species in Central Europe. Dendrochronologia, 48: 1–9. https://doi.org/10.1016/j.dendro.2018.01.001
 
Yamaguchi D.K. (1991): A simple method for cross-dating increment cores from living trees. Canadian Journal Forest Research, 21: 414–416. https://doi.org/10.1139/x91-053
 
Zahradník D., Vacek S., Bílek L., Nosková I., Vacek Z. (2010): Horizontal structure of forest stands on permanent research plots in the Krkonoše Mts. and its development. Journal of Forest Science, 56: 531–540.
 
Zang C., Hartl-Meier C., Dittmar C., Rothe A., Menzel A. (2014): Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology, 20: 3767–3779. https://doi.org/10.1111/gcb.12637
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti