Prediction of flood discharge and flood flow depth using a hydraulic model and flood marks on the trees in ungauged forested watersheds

https://doi.org/10.17221/6/2022-JFSCitation:

Gholami V. (2022): Prediction of flood discharge and flood flow depth using a hydraulic model and flood marks on the trees in ungauged forested watersheds. J. For. Sci., 68: 190–198.

download PDF

It is difficult to estimate flood discharges and the flood zones as well as to design hydraulic structures in rivers without using hydrometric stations. Furthermore, using different models to determine the mentioned cases will be accompanied by errors. Therefore, flood marks on the trunks of trees located in the Babolrood riverbed were used to determine the peak discharge, flood flow depth, and flood zone in northern Iran. First, a hydraulic model for the study river was provided using topographic maps with a scale of 1: 1 000, HEC-GeoRAS extension (GIS), and HEC-RAS model. Then, the flood marks of past floods in the form of silt and clay sediments (deposits on the trees in the riverbed) were evaluated and the maximum flood flow depth was determined. Finally, the peak discharge of the past flood was estimated by the trial-and-error method to achieve the flood flow depth in the different river reaches. Then, the hydraulic model using the flow depth data was calibrated in the reaches, and, in the final step, based on the flood marks of other reaches, the model was validated. According to the results, the maximum instantaneous discharge rate of the study flood was 155 m3·s–1 and the maximum flood flow depth was about 2 m. Furthermore, the results showed that the flood mark data in forest lands can be used as a tool for the calibration and validation of hydraulic models. The present methodology is an efficient method for determining the flood peak discharge, spatial variation of the flood depth, and flood zone in forest watersheds without hydrometric stations.

References:
Arsenault R., Brissette F.P. (2014): Continuous stream flow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches. Water Resources Research, 50: 6135–6153. https://doi.org/10.1002/2013WR014898
 
Asfaha T.G., Frankl A., Haile M., Zenebe A., Nyssen J. (2015): Determinants of peak discharge in steep mountain catchments – Case of the Rift Valley escarpment of Northern Ethiopia. Journal of Hydrology, 529: 1725–1739. https://doi.org/10.1016/j.jhydrol.2015.08.013
 
Azarga E. (1999): Flood plain visualization using Tins. [MSc. Thesis.] Austin, University of Texas at Austin.
 
Balasch J.C., Ruiz-Bellet J.L., Tuset J. (2011): Historical flash floods retromodelling in the Ondara River in Tarrega (NE Iberian Peninsula). Natural Hazards and Earth System Sciences, 11: 3359–3371. https://doi.org/10.5194/nhess-11-3359-2011
 
Bárdossy A. (2007): Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 11: 703–710. https://doi.org/10.5194/hess-11-703-2007
 
Bhadra A., Panigrahy N., Singh R., Raghuwanshi N.S., Mal B.C., Tripathi M.P. (2008): Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Environmental Modelling and Software, 23: 1013–1025. https://doi.org/10.1016/j.envsoft.2007.08.008
 
Binh L.T.H., Umamahesh N.V., Rathnam E.V. (2019): High-resolution flood hazard mapping based on nonstationary frequency analysis: Case study of Ho Chi Minh City, Vietnam. Hydrological Sciences Journal, 64: 318–335. https://doi.org/10.1080/02626667.2019.1581363
 
Burns D., Vitvar T., McDonnell J., Hassett J., Duncan J., Kendall C. (2005): Effects of suburban development on runoff generation in the Croton River basin, New York, USA. Journal of Hydrology, 311: 266–281. https://doi.org/10.1016/j.jhydrol.2005.01.022
 
Carson E.C. (2006): Hydrologic modeling of flood conveyance and impacts of historic overbank sedimentation on West Fork Black’s Fork, Uinta Mountains, northeastern Utah, USA. Geomorphology, 75: 368–383. https://doi.org/10.1016/j.geomorph.2005.07.022
 
Dalir P., Naghdi R., Gholami V. (2014): Modelling of forest road sediment in the northern forest of Iran (Lomir Watershed). Journal of Forest Science, 60: 109–114. https://doi.org/10.17221/91/2013-JFS
 
El-Hames A.S. (2012): An empirical method for peak discharge prediction in ungauged arid and semi-arid region catchments based on morphological parameters and SCS curve number. Journal of Hydrology, 456: 94–100. https://doi.org/10.1016/j.jhydrol.2012.06.016
 
Gholami V., Azodi M., Taghvaye Salimi E. (2008): Modeling of karst and alluvial springs discharge in the central Alborz highlands and on the Caspian southern coasts. Caspian Journal of Environmental Sciences, 6: 41–45.
 
Gholami V., Darvari Z., Mohseni Saravi M. (2015): Artificial neural network technique for rainfall temporal distribution simulation (Case study: Kechik region). Caspian Journal of Environmental Sciences, 13: 53–60.
 
Gholami V., Torkaman J., Dalir P. (2019): Simulation of precipitation time series using tree-rings, earlywood vessel features, and artificial neural network. Theoretical and Applied Climatology, 137: 1939–1948. https://doi.org/10.1007/s00704-018-2702-3
 
Gholami V., Sahour H., Torkaman J. (2021): Monthly river flow modeling using earlywood vessel feature changes, and tree-rings. Ecological Indicators, 125: 107590. https://doi.org/10.1016/j.ecolind.2021.107590
 
Hill M. (2001): Flood Plain Delineation Using the HEC-geo-RAS Extension for Arc View. Provo, Brigham Young University: 514.
 
Hirsch R.M., Walker J.F., Day J.C., Kallio R. (1990): The influence of man on hydrologic systems. In: Wolman M.G., Riggs H.C. (eds): Surface Water Hydrology. Boulder, Geological Society of America: 329–359.
 
Hooijer A., Klijn F., Pedroli G.B.M., Van Os A.G. (2004): Towards sustainable flood risk management in the Rhine and Meuse river basins: Synopsis of the findings of IRMA-SPONGE. River Research and Applications, 20: 343–357. https://doi.org/10.1002/rra.781
 
Hyalmarson H.W. (1988): Flood hazard zonation in arid lands. Transportation Research Record, 1201: 1–8.
 
Islam M.M., Sado K. (2000): Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS. Hydrological Sciences Journal, 45: 337–355. https://doi.org/10.1080/02626660009492334
 
Kayan G., Riazi A., Erten E., Türker U. (2021): Peak unit discharge estimation based on ungauged watershed parameters. Environmental Earth Sciences, 80: 42. https://doi.org/10.1007/s12665-020-09317-4
 
Khaleghi M.R., Varvani J. (2018): Sediment rating curve parameters relationship with watershed characteristics in the semiarid river watersheds. Arabian Journal for Science and Engineering, 43: 3725–3737. https://doi.org/10.1007/s13369-018-3092-7
 
Luu C., Von Meding J., Kanjanabootra S. (2018): Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90: 1031–1050. https://doi.org/10.1007/s11069-017-3083-0
 
Meresa H. (2019): Modelling of river flow in ungauged catchment using remote sensing data: application of the empirical (SCSCN), artificial neural network (ANN) and hydrological model (HEC-HMS). Modeling Earth Systems and Environment, 5: 257–273. https://doi.org/10.1007/s40808-018-0532-z
 
Pappas E.A., Smith D.R., Huang C., Shuster W.C., Bonta J.V. (2008): Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena, 72: 146–152. https://doi.org/10.1016/j.catena.2007.05.001
 
Pistocchi A., Mazzoli P. (2002): Use of HEC-RAS and HEC-HMS models with ArcView for hydrologic risk management. In: 1st International Congress of Environmental Modelling and Software, Lugano, June 24–27, 2002: 305–310.
 
Sahour H., Gholami V., Torkaman J., Vazifedan M., Saeedi S. (2021a): Random forest and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree-rings. Environmental Earth Sciences, 80: 747. https://doi.org/10.1007/s12665-021-10054-5
 
Sahour H., Gholami V., Vazifedan M., Saeedi M. (2021b): Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research, 211: 105032. https://doi.org/10.1016/j.still.2021.105032
 
Santos P.P., Tavares A.O., Andrade A.I.A.S.S. (2011): Comparing historical-hydro geomorphological reconstitution and hydrological-hydraulic modeling in the estimation of flood-prone areas – A case study in Central Portugal. Natural Hazards and Earth System Sciences, 11: 1669–1681. https://doi.org/10.5194/nhess-11-1669-2011
 
Sheikh V. (2014): Analysis of hydroclimatic trends in the Atrak River basin, North Khorasan, Iran (1975–2008). Environmental Resources Research, 2: 1–14.
 
Varvani J., Khaleghi M.R., Gholami V. (2019): Investigation of the relationship between sediment graph and hydrograph of flood events (Case study: Gharachay River Tributaries, Arak, Iran). Water Resources, 46: 883–893. https://doi.org/10.1134/S0097807819060204
 
Waghwala R.K., Agnihotri P.G. (2019): Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction, 40: 101155. https://doi.org/10.1016/j.ijdrr.2019.101155
 
Walega A., Salata T. (2019): Influence of land cover data sources on estimation of direct runoff according to SCS-CN and modified SME methods. Catena, 172: 232–242. https://doi.org/10.1016/j.catena.2018.08.032
 
Werner M.G.F., Hunter N.M., Bates P.D. (2005): Identifiability of distributed floodplain roughness values in flood extent estimation. Journal of Hydrology, 314: 139–157. https://doi.org/10.1016/j.jhydrol.2005.03.012
 
Worku T., Khare D., Tripathi S.K. (2017): Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environtal Earth Sciences, 76: 550. https://doi.org/10.1007/s12665-017-6883-3
 
Yazdi J., Salehi Neyshabouri S.A.A. (2015): An optimization model for floodplain systems considering inflow uncertainties. Water Resources Management, 29: 1295–1313. https://doi.org/10.1007/s11269-014-0874-x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti