Comparison of Myriapoda in beech and spruce forests

https://doi.org/10.17221/72/2014-JFSCitation:Kula E., Lazorík M. (2015): Comparison of Myriapoda in beech and spruce forests. J. For. Sci., 61: 306-314.
download PDF
Pitfall traps were used to capture 3,550 individuals and 34 species of Myriapoda in five pairs of Norway spruce and beech stands in the Moravskoslezské Beskydy Mts. (Czech Republic). Differences in the occurrence of Chilopoda, Diplopoda and Isopoda on sites with spruce and beech were determined by F-test. Diplopoda and Isopoda preferred beech stands and Chilopoda spruce stands. The species Protracheoniscus politus (Koch) (Isopoda) indicated a positive relation to beech stands. Among Diplopoda, a strong linkage to beech was seen in Glomeris hexasticha (Brandt), while Julus scandinavius (Latzel), Hassea flavescens (Latzel) and Brachyiulus bagnalli (Curtis) tended to prefer the spruce forest environment. The highest variability was found in Chilopoda, of which the species dominating in beech stands are Cryptops parisi (Brölemann), Strigamia acuminata (Leach) and Strigamia transsilvanica (Verhoeff), while Geophilus flavus (DeGeer) and Geophilus insculptus (Attems) prevail in spruce stands. A wide spectrum of captured species of the order Lithobiomorpha differentiate in their relation to spruce [Lithobius forficatus (L.), L. cyrtopus Latzel, L. erythrocephalus C.L. Koch, L. tenebrosus Meinert, L. austriacus (Verhoeff), L. biunguiculatus (Loksa)] and beech [Lithobius microps (Meinert), L. mutabilis L. Koch, L. burzenlandicus Verhoeff, L. micropodus (Matic) and
L. nodulipes Latzel]. Based on the findings, we can confirm increased incidence in beech forests, although the result is not unambiguous. Therefore, it is necessary to admit that the factor of the main tree species within a stand cannot be used as the single criterion and needs to be supplemented with additional conditions of the natural environment.
References:
Albert A.M. (1982): Species spectrum and dispersion patterns of chilopods in three Solling habitats. Pedobiologia, 23: 337–347.
 
Auerbach Stanley I. (1951): The Centipedes of the Chicago Area with Special Reference to Their Ecology. Ecological Monographs, 21, 97-  https://doi.org/10.2307/1948647
 
Barber M.G. (2004): Millipedes (Diplopoda) and Centipedes (Chilopoda) (Myriapoda) as predators of terrestrial Gastropods. In: Barber M.G. (ed.): Natural Enemies of Terrestrial Molluscs: 405–425.
 
Bardgett R.D., Wardle D.A. (2010): Aboveground-belowground Linkages: Biotic Interactions, Ecosystem Processes and Global Change. New York, Oxford University Press: 301.
 
Blackburn James, Farrow Malcolm, Arthur Wallace (2002): Factors influencing the distribution, abundance and diversity of geophilomorph and lithobiomorph centipedes. Journal of Zoology, 256, 221-232  https://doi.org/10.1017/S0952836902000262
 
Blagodatskaya Evgenia V., Anderson Traute-Heidi (1998): Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30, 1269-1274  https://doi.org/10.1016/S0038-0717(98)00050-9
 
Blower J.G. (1955): Millipedes and centipedes as soil animals. In: Kevan D.K.M. (ed.): Soil Zoology. London, Butterworths Scientific Publications: 138–151.
 
Blower J.G. (1985): Millipedes. Linnean Society Synopses of the British Fauna, No. 35. London, Linnaean Society: 242.
 
Bornebusch C.H. (1930): The Fauna of the Forest Soil. Det forstlige Forsogsvaesen i Danmark, 11. Copenhagen, Lynge & Søn: 1–225.
 
Craston P.S., Trueman J.W.H. (1997): ‘Indicator' taxa in invertebrate biodiversity assessment. Memorial Museum Victoria, 56: 267–274.
 
David J.F., Ponge J.F., Delecour F. (1993): The saprophagous macrofauna of different types of humus in beech forests of the Ardenne (Belgium). Pedobiologia, 37: 49–56.
 
Frankeberger Z. (1959): Stejnonožci suchozemští – Oniscoidea. Fauna ČSR, 14. Praha, NČSAV: 216.
 
Fründ H.C. (1983): Untersuchungen zur Koexistenz verschiedener Chilopodenarten im Waldboden. [Ph.D. Thesis.] Würzburg, University of Würzburg: 164.
 
Funke W. (1971): Food and energy turnover of leaf-eating insects and their influence on primary production. Ecology Studies, 2: 81–93.
 
Gallet Christiane, Lebreton Philippe (1995): Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biology and Biochemistry, 27, 157-165  https://doi.org/10.1016/0038-0717(94)00167-Y
 
Grgic T., Kos I. (2003): Centipede diversity in patches of different development phases in an unevenly-aged beech forest stand in Slovenia. African Invertebrates, 44: 237–252.
 
Hanski I.A. (1998): Metapopulation dynamics. Nature, 396: 41–49. https://doi.org/10.1038/23876
 
Hopkin S.P., Read H.J. (1992): The biology of millipedes. New York, Oxford University Press: 223.
 
Kazda M., Pichler M. (1998): Priority assessment for conversion of Norway spruce forests through introduction of broadleaf species. Forest Ecology and Management, 102, 245-258  https://doi.org/10.1016/S0378-1127(97)00166-7
 
Lang J. (1954): Mnohonožky – Diplopoda. Praha, Nakladatelství Československé akademie věd: 183.
 
Lorenz Klaus, Preston Caroline M, Raspe Stephan, Morrison Ian K, Feger Karl Heinz (2000): Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biology and Biochemistry, 32, 779-792  https://doi.org/10.1016/S0038-0717(99)00201-1
 
Maraun Mark, Scheu Stefan (1995): Influence of beech litter fragmentation and glucose concentration on the microbial biomass in three different litter layers of a beechwood. Biology and Fertility of Soils, 19, 155-158  https://doi.org/10.1007/BF00336152
 
Nihlgård Bengt, Nihlgard Bengt (1971): Pedological Influence of Spruce Planted on Former Beech Forest Soils in Scania, South Sweden. Oikos, 22, 302-  https://doi.org/10.2307/3543854
 
Poser T. (1990): The influence of litter manipulation on the centipedes of a beach wood. In: Minelli A. (ed.): Proceedings of the 7th International Congress of Myriapodology. Brill, Leiden, July 19–24, 1987: 235–245.
 
Rejšek K. (1991): Acid phosphomonoesterase activity of ectomycorrhizal roots in norway spruce pure stands exposed to pollution. Soil Biology and Biochemistry, 23, 667-671  https://doi.org/10.1016/0038-0717(91)90081-T
 
Schaefer Matthias (1990): The soil fauna of a beech forest on limestone: trophic structure and energy budget. Oecologia, 82, 128-136  https://doi.org/10.1007/BF00318544
 
Schafer M., Schauermann J. (1990): The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia, 34: 299–314.
 
Schatzmann E. (1990): Weighting of habitat types for estimation of habitat overlap-application to a collection of Swiss centipedes. In: Minelli A. (ed.): Proceedings of the 7th International Congress of Myriapodology. Brill, Leiden, July 19–24, 1987: 299–309.
 
Scheu S., Sprengel T. (1989): Die Rolle der endogäischen Regenwürmer im Ökosystem Kalkbuchenwald und ihre Wechselwirkung mit saprophagen Makroarthropoden. Verhandlungen der Gesellschaft für Ökologie, 17: 237–243.
 
Scheu Stefan (1992): Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biology and Biochemistry, 24, 1113-1118  https://doi.org/10.1016/0038-0717(92)90061-2
 
Scheu Stefan, Albers Derk, Alphei Jorn, Buryn Romuald, Klages Ute, Migge Sonja, Platner Christian, Salamon Jorg-Alfred (2003): The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos, 101, 225-238  https://doi.org/10.1034/j.1600-0706.2003.12131.x
 
Ter Braak C.J.F., Smilauer P. (2002): CANOCO Reference Manual and Canodraw for Windows Users Guide: Software for Canonical Community Ordination Version 4.5. Ithaca, Wageningen: 500.
 
Tuf I.H., Tufová J. (2008): Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic. Časopis Slezského Muzea Opava (A), 57: 37–44.
 
Ulrich B. (1987): Stability, elasticity, and resilience of terrestrial ecosystems with respect to matter balance. In: Schulze E.D., Zwölfer H. (eds): Potentials and limitations of ecosystem analysis. Ecological Studies, 61: 11–49.
 
Ulrich B., Sumner M.E. (1991): Soil Acidity. Berlin, Springer. In: Ulrich B., Mayer R., Khanna P.K., Seekamp G., Fassbender H.W. (1976): Input, output und interner Umsatz von chemischen Elementen bei einem Buchen- und einem Fichtenbestand. Verhandlungen der Gesellschaft für Ökologie, Göttingen. The Hague, Dr. W. Junk Publ.: 17–28.
 
Ulrich B. (1994): Nutrient and acid-base budget of Central European forest ecosystems. In: Godbold D.L., Hüttermann A. (eds): Effects of Acid Rain on Forest Processes. New York, John Wiley & Sons: 1–50.
 
Neuhauser E.F., Hartenstein R. (1978): Phenolic content and palatability of leaves and wood to soil isopods and diplopods. Pedobiologia, 18: 99–109.
 
Scheu Stefan, Poser Gertrude (1996): The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: indications for stemflow induced changes in community structure. Applied Soil Ecology, 3, 115-125  https://doi.org/10.1016/0929-1393(95)00079-8
 
Wigley T. Bently, Roberts Thomas H. (1994): Forest management and wildlife in forested wetlands of the southern Appalachians. Water, Air, & Soil Pollution, 77, 445-456  https://doi.org/10.1007/BF00478432
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti