Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity

https://doi.org/10.17221/75/2015-JFSCitation:Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. J. For. Sci., 61: 456-464.
download PDF
1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic 2Forestry and Game Management Research Institute, Jíloviště-Strnady, Opočno Research Station, Opočno, Czech Republic ABSTRACT: We present the results of research on diameter increment in beech stands in the area of Hostýnské and Vsetínské vrchy. The data were collected on three series of permanent research plots (PRP) in middle-aged stands in the property of BFP Forests and Estates of Tomas Baťa, Ltd. established for the evaluation of the effect of different thinning regimes. Each series consists of one control plot and two plots with different treatment intensity. The objective of this paper was to assess the increment response of beech individuals in the first year after a thinning intervention and to evaluate the increment of sample trees in relation to the social position of tree in the stand and the climate trends in the last 30 years. The diameter increment was evaluated on harvested sample trees, after the thinning treatment the growth reaction of standing sample trees of the main stand was evaluated based on their dendrometric characteristics. To calculate the radial growth of beech, the annual ring increment series were cross-dated individually (to eliminate errors caused by missing annual rings) using statistical tests in the PAST4 application software (Knibbe 2007) and then subjected to visual inspection according to Yamaguchi (1991). If a missing annual ring was found, a ring 0.01 mm wide was inserted in its place. The individual curves from PRPs were then detrended and an average annual ring series was created in the ARSTAN software. First a negative exponential spline was used, and then the 30-year spline was applied (Grissino-Mayer et al. 1992). The response of tree radial growth to climatic factors was evaluated using the DendroClim software. The method of single pointer years analysis was used to estimate the influence of extreme climatic events on diameter growth. One year after thinning, the harvest intensity had no significant effect on the radial growth of dominant trees (F(4, 293) = 1.0, P > 0.05), but oppositely, differences in the average diameter increment of co-dominant trees on PRPs were statistically significant (F(4, 362) = 2.6,
P < 0.05). The diameter increment of dominant trees in 1978–2013 showed positive correlations with the March temperatures of the current year (r = 0.27) and negative ones with June–September (r = –0.28 to –0.43) and November (r = –0.36) of the last year and April, June and July (r = –0.35 to –0.44) of the current year. Negative correlations of temperature in the growing season of the current year were similar to dominant trees, only the impact was weaker in April to August (r = –0.28 to –0.32). According to the results of the PCA analysis, annual ring width was negatively correlated with temperatures in the vegetation season of the last year and current year, July, April and June temperature of the current year, and with precipitation in January–March of the current year.
Abetz P. (1979): Brauchen wir „Durchforstungshilfen?“. Schweizerische Zeitschrift für Forstwesen, 130: 945–963.
Aertsen Wim, Janssen Ellen, Kint Vincent, Bontemps Jean-Daniel, Van Orshoven Jos, Muys Bart (2014): Long-term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. Forest Ecology and Management, 312, 252-259  https://doi.org/10.1016/j.foreco.2013.09.034
Altherr E. (1971): Festschrift zur 15. Hauptversammlung des baden-württembergischen Forstvereins, 15: 123 – 127.
Altherr E. (1981): Erfahrungen bei der Anwendung quantifizierter Durchforstungshilfen in Buchen beständen. Allgemeine Forstzeitschrift, 22: 552–554.
Aranda Ismael, Forner Alicia, Cuesta Barbara, Valladares Fernando (2012): Species-specific water use by forest tree species: From the tree to the stand. Agricultural Water Management, 114, 67-77  https://doi.org/10.1016/j.agwat.2012.06.024
Assmann E. (1970): The Principles of Forest Yield Study. Oxford: Pergamon Press: 506.
Biondi F. (1993): Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica, 14: 57–71.
Biondi Franco, Waikul Kishor (2004): DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30, 303-311  https://doi.org/10.1016/j.cageo.2003.11.004
Boncina Andrej, Kadunc Ales, Robic Dusan (2007): Effects of selective thinning on growth and development of beech ( Fagus sylvatica L.) forest stands in south-eastern Slovenia. Annals of Forest Science, 64, 47-57  https://doi.org/10.1051/forest:2006087
Maxime Cailleret, Hendrik Davi (2011): Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees, 25, 265-276  https://doi.org/10.1007/s00468-010-0503-0
Cameron A.D. (2002): Importance of early selective thinning in the development of long-term stand stability and improved log quality: a review. Forestry, 75, 25-35  https://doi.org/10.1093/forestry/75.1.25
Desplanque Carole, Rolland C., Schweingruber Fritz Hans (): Influence of species and abiotic factors on extreme tree ring modulation:. Trees, 13, 218-  https://doi.org/10.1007/s004680050236
Dittmar C., Elling W. (1999): Radial growth of Norway spruce and European beech in relation to weather and altitude. Forstwissenschaftliches Centralblatt, 118: 251–270.
Dittmar Christoph, Zech Wolfgang, Elling Wolfram (2003): Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Forest Ecology and Management, 173, 63-78  https://doi.org/10.1016/S0378-1127(01)00816-7
Felbermeier B. (1994): Die klimatische Belastbarkeit der Buche. Forstwissenschaftliches Centralblatt, 113, 152-174  https://doi.org/10.1007/BF02936695
Geßler Arthur, Keitel Claudia, Kreuzwieser Jürgen, Matyssek Rainer, Seiler Wolfgang, Rennenberg Heinz (2006): Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21, 1-11  https://doi.org/10.1007/s00468-006-0107-x
Grissino-Mayer H.D., Holmes R.L., Fritts H.C. (1992): International tree-ring data bank program library: user´s manual. Laboratory of Tree-Ring Research. Tuscon, University of Arizona: 104.
Guericke M. (2002): Untersuchungen zur Wuchsdynamik der Buche. Forst und Holz, 57: 331–337.
Chroust L. (1997): Ekologie výchovy lesních porostu. Smrk obecný – borovice lesní – dub letní – porostní prostředí – růst stromu – produkce porostu. Opočno, Výzkumný ústav lesního hospodářství – Výzkumná stanice Opočno: 277.
Indruch A. (1989): Zakládání a výchova listnatých porostů. Praha, SZN: 144.
Kladtke J. (2002): Wachstum groskroniger Buchen und waldbauliche Konsequenzen. Forstarchiv, 73(6): 211-217.
Knibbe B. (2007): PAST 4: personal analysis system for treering research, Version 4.2. Vienna, SCIEM: 101.
Knoke T. (2003): Felling strategies in beech stands (Fagus sylvatica L.) in the context of risks of red heartwood – a silvicultural/forest economics study. Forstliche Forschungsberichte Munchen, 193: 11.
Knoke Thomas, Stang Sebastian, Remler Norbert, Seifert Thomas (2006): Ranking the importance of quality variables for the price of high quality beech timber ( Fagus sylvatica L.). Annals of Forest Science, 63, 399-413  https://doi.org/10.1051/forest:2006020
Knoke Thomas, Wenderoth Stephanie Schulz (2001): Ein Ansatz zur Beschreibung von Wahrscheinlichkeit und Ausmaß der Farbkernbildung bei Buche (Fagus sylvatica L.). Forstwissenschaftliches Centralblatt, 120, 154-172  https://doi.org/10.1007/BF02796089
Korpeľ Š. (1986): Pestovanie lesa. Zvolen, VŠLD: 404.
Korpeľ Š. (1988): Dynamika rastu a vývoja bukových porastov vo fáze mladiny až žrďoviny vplyvom pestovnej techniky. Acta Facultatis Forestalis, 30: 9–38.
Kurt A. (1982): Ziel, Voraussage und Kontrolle von Nutzungen im Forstbetrieb. Schweizerische Zeitschrift für Forstwesen, 133: 93–114.
Lebourgeois F., Eberlé P., Mérian P., Seynave I. (2014): Social status-mediated tree-ring responses to climate of Abies alba and Fagus sylvatica shift in importance with increasing stand basal area. Forest Ecology and Management, 328, 209-218  https://doi.org/10.1016/j.foreco.2014.05.038
Petráš R., Mecko J. (2011): Effect of climatic factors on the dynamics of radial increments of Norway spruce, European beech and sessile oak. Journal of Forest Science, 57: 293–302.
PIOVESAN GIANLUCA, BIONDI FRANCO, FILIPPO ALFREDO DI, ALESSANDRINI ALFREDO, MAUGERI MAURIZIO (2008): Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biology, 14, 1265-1281  https://doi.org/10.1111/j.1365-2486.2008.01570.x
Poleno Z., Vacek S., Podrázský V., Remeš J., Štefánčík I., Mikeska M., Kobliha J., Kupka I., Malík V., Turčáni M., Dvořák J., Zatloukal V., Bílek L., Baláš M., Simon J. (2009): Pěstování lesů III. Kostelec n Č. l., Lesnická práce: 952.
Pretzsch Hans (2005): Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots. European Journal of Forest Research, 124, 193-205  https://doi.org/10.1007/s10342-005-0068-4
Račko V., Čunderlík I., Saniga M. (2015): Influence of silvicultural strategies on red heartwood occurrence in beech (Preliminary study). Wood Research, 60: 11–24.
Saniga M., (2001): Pestovanie lesa. Vyd. 1. Zvolen: Ústav pre výchovu a vzdelávanie pracovníkov lesného a vodného hospodárstva SR: 176.
Schädelin W. (1936): Die Durchforstung als Auslese- und Veredelungsbetrieb höchster Wertleistung. Bern, Leipzig, Haupt: 124.
Schou Erik, Meilby Henrik (2013): Transformation of even-aged European beech (Fagus sylvatica L.) to uneven-aged management under changing growth conditions caused by climate change. European Journal of Forest Research, 132, 777-789  https://doi.org/10.1007/s10342-013-0702-5
Schütz J.P. (1987): Auswahl der Auslesebäume in der schweizerischen Auslesedurchforstung, Schweizerische Zeitschrift für Forstwesen, 183: 1037–1053.
Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. (1990): Identification, presentation and in terpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 9–38.
Slodičák M., Novák J. (2007): Výchova lesních porostů hlavních hospodářských dřevin. Strnady, VÚLHM: 46.
Spellmann H., Nagel J. (1996): Zur Durchforstung von Fichte und Buche. Allgemeine Forst und Jagdzeitung, 167: 6–15.
Spellmann H., Nagel J. (1996): Zur Durchforstung von Fichte und Buche. Allgemeine Forst und Jagdzeitung, 167: 6–15.
Štefančík L. (1974): Prebierky bukových žrďovín. Lesnícke štúdie. Bratislava, Príroda: 141.
Štefančík L. (1984): Úrovňová voľná prebierka – metóda biologickej intenzifikácie a racionalizácie selekčnej výchovy bukových porastov. Vedecké práce VÚLH vo Zvolene, 34: 69–112.
Štefančík I. (2013): Development of target (crop) trees in beech (Fagus sylvatica L.) stand with delayed initial tending and managed by different thinning methods. Journal of Forest Science, 59: 253–259.
Štefančík I. (2014): Porovnanie kvalitatívnej produkcie dvoch bukových (Fagus sylvatica L.) porastov na kyslom stanovišti. Lesnicky časopis – Forestry Journal, 60: 231–239.
ter Braak C.J.F., Šmilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User›s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca. Microcomputer Power. Available at www.canoco.com.
van der Maaten Ernst (2012): Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees, 26, 777-788  https://doi.org/10.1007/s00468-011-0645-8
Wallentin C. (2007): Thinning of Norway Spruce. [Doctoral Thesis.] Acta Universitatis Agriculturae Sueciae, 29: 116.
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti