Norway maple (Acer platanoides) and pedunculate oak (Quercus robur) demonstrate different patterns of genetic variation within and among populations on the eastern border of distribution ranges

Akhmetov A., Ianbaev R., Boronnikova S., Yanbaev Y., Gabitova A., Kulagin A. (2021): Norway maple (Acer platanoides) and pedunculate oak (Quercus robur) demonstrate different patterns of genetic variation within and among populations on the eastern border of distribution ranges. J. For. Sci., 67: 522–532.

download PDF

Norway maple (Acer platanoides L.) is a key species of broadleaved forests whose population genetics is poorly studied using modern genetic tools. We used ISSR analysis to explore genetic diversity and differentiation among 10 Russian populations on the eastern margin of the species range of distribution, and to compare the revealed patterns with the results of our population genetic studies of pedunculate oak (Quercus robur L.). In the first set comparatively high heterozygosity and allelic diversity were found (expected heterozygosity HE = 0.160 ± 0.033, number of alleles na = 1.440 ± 0.080, effective number of alleles ne = 1.271 ± 0.062) in comparison with strongly fragmented and geographically isolated small maple stands of the second set (HE = 0.083 ± 0.011, na = 1.281 ± 0.031, ne = 1.136 ± 0.019). A relatively high genetic differentiation among populations was detected (the proportion of the inter-population component of total genetic variation, GST = 0.558 ± 0.038). In the Cis-Urals, local groups of populations that are confined to the northern, middle and southern parts of the Urals were identified. On the contrary, the current significant fragmentation of the pedunculate oak distribution area in the same study area did not lead to any noticeable genetic differentiation among the majority of populations, the values of the population genetic diversity were very similar in different parts of the Southern Urals.

Aguilar R., Quesada M., Ashworth L., Herrerias-Diego Y., Lobo J. (2008): Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Molecular Ecology, 17: 5177–5188.
Bertolasi B., Leonarduzzi C., Piotti A., Leonardi S., Zago L., Gui L., Gorian F., Vanetti I., Binelli G. (2015): A last stand in the Po valley: Genetic structure and gene flow patterns in Ulmus minor and U. pumila. Annals of Botany, 115: 683–692.
Blanc-Jolivet C., Bakhtina S., Yanbaev R., Yanbaev Y., Mader M., Guichoux E., Degen B. (2020): Development of new SNPs loci on Quercus robur and Quercus petraea for genetic studies covering the whole species’ distribution range. Conservation Genetics Resources, 12: 597–600.
Bukshtinov A.D. (1982): Klen. Moscow, Lesn. prom-st: 86.
Bushbom J., Yanbaev Y., Degen B. (2011): Efficient long-distance gene flow into an isolated relict oak stand. Journal of Heredity, 102: 464–472.
Caudullo G., de Rigo D. (2016): Acer platanoides in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, Publication Office of the European Union: 54–55.
Cortés A.J., Restrepo-Montoya M., Bedoya-Canas L.E. (2020): Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science, 11: 1606.
Degen B., Yanbaev R., Yanbaev Y. (2019): Genetic differentiation of Quercus robur in the South-Ural. Silvae Genetica, 68: 111–115.
Degen B., Blanc-Jolivet C., Bakhtina S., Ianbaev R., Yanbaev Y., Mader M., Nürnberg S., Schröder H. (2021a): Applying targeted genotyping by sequencing with a new set of nuclear and plastid SNP and indel loci for Quercus robur and Quercus petraea. Conservation Genetics Resources, 13: 345–347.
Degen B., Yanbaev Y., Blanc-Jolivet C., Ianbaev R., Bakhtina S., Mader M. (2021b): Genetic comparison of planted and natural Quercus robur stands in Russia. Silvae Genetica, 70: 1–8.
Degen B., Yanbaev Y., Ianbaev R., Bakhtina S., Tagirova A. (2021c): Genetic diversity and differentiation among populations of the pedunculate oak (Quercus robur) at the eastern margin of its range based on a new set of 95 SNP loci. Journal of Forestry Research, 32: 2237–2243.
Earl D.A., von Holdt B.M. (2012): STRUCTURE HARVESTER:
A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4: 359–361.
Falush D., Stephens M., Pritchard J.K. (2003): Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164: 1567–1587.
Gorchakovsky P.L. (1972): Shirokolistvennye lesa i ikh mesto v rastitelnom pokrove Yuzhnogo Urala. Moscow, Nauka: 146.
Hewitt G. (2000): The genetic legacy of the Quaternary ice ages. Nature, 405: 907–913.
Hytteborn H., Maslov A.A., Nazimova D.I., Rysin L.P. (2005): Boreal forests of Eurasia. In: Andersson F.A. (ed): Ecosystems of the World 6. Coniferous Forests. Amsterdam, Elsevier: 23–99.
Kremer A., Hipp A.L. (2020): Oaks: An evolutionary success story. New Phytologist, 226: 987–1011.
Nei M. (1972): Genetic distance between populations. The American Naturalist, 106: 283–292.
Nei M., Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269–5273.
Neustadt M.I. (1957): Istoriya lesov i paleogeografiya SSSR v golocene. Moscow, Izd-vo AN SSSR: 403.
Panchuk I.I., Kasianchuk R.M., Volkov R.A. (2019): Subrepeats in 5 s rDNAs as a molecular marker in Acer platanoides L. populations. Factors in Experimental Evolution of Organisms, 25: 80–85.
Peakall R., Smouse P.E. (2006): GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6: 288–295.
Petit R.J., Aguinagalde I., de Beaulieu J.L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Müller-Starck G., Demesure-Musch B., Palmé A., Martín J.P., Rendell S., Vendramin G.G. (2003): Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300: 1563–1565.
Petit R.J., Bialozyt R., Brewer S., Cheddadi R., Comps B. (2001): From spatial patterns of genetic diversity to postglacial migration processes in forest trees. In: Silvertown J., Antonovics J. (eds): Integrating Ecology and Evolution in a Spatial Context. Oxford, Blackwell: 295–318.
Petit R.J., Csaikl U.M., Bordács S., Burg K., Coart E., Cottrell J., van Dam B., Deans J.D., Dumolin-Lapègue S., Fineschi S., Finkeldey R., Gillies A., Glaz I., Goicoechea P.G., Jensen J.S., König A.O., Lowe A.J., Madsen S.F., Mátyás G., Munro R.C., Olalde M., Pemonge M.H., Popescu F., Slade D., Tabbener H., Taurchini D., de Vries S.G.M., Ziegenhagen B., Kremer A. (2002): Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156: 5–26.
Popov G.V. (1980): Lesa Bashkirii. Ufa, Bashk. kn. izd-vo: 144.
Porth I., El-Kassaby Y. (2014): Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity, 6: 283–295.
Rogers S.O., Bendich A.J. (1985): Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 5: 69–76.
Rusanen M., Vakkari P., Blom A. (2003): Genetic structure of Acer platanoides and Betula pendula in northern Europe. Canadian Journal of Forest Research, 33: 1110–1115.
Semerikova S.A., Isakov I.Y., Semerikov V.L. (2021): Chloroplast DNA variation and phylogeography of pedunculate oak Quercus robur L. in the Eastern part of the range. Russian Journal of Genetics, 57: 47–60.
Smirnova O.V., Kalyakin V.N., Turubanova S.A., Bobrovsky M.V., Khanina L.G. (2017): Development of the European Russian forests in the Holocene. In: Smirnova O.V., Bobrovsky M.V., Khanina L.G. (eds): European Russian Forests. Their Current State and Features of Their History. Dordrecht, Springer: 515–536.
Smulders M.J.M., Cobben M.M.P., Arens P., Verboom J. (2009): Landscape genetics of fragmented forests: Anticipating climate change by facilitating migration. iForest – Biogeosciences and Forestry, 2: 128–132.
Sun S., Zhang Y., Huang D., Wang H., Cao Q., Fan P., Yang N., Zheng P., Wang R. (2020): The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment, 744: 140786.
Van de Peer Y., De Wachter R. (1994): TREECON for Windows: A software package for the construction and drawing evolutionary trees for the Microsoft Windows environment. Computer Application in the Biosciences, 10: 569–570.
Velichko A.A., Andreev A.A., Klimanov V.A. (1997): Climate and vegetation dynamics in the tundra and forest zone during the Late Glacial and Holocene. Quaternary International, 41: 71–96.
Wright S. (1984): Evolution and the Genetics of Populations. Vol. 2: Theory of Gene Frequencies. Chicago, University of Chicago Press: 511.
Yeh F.C., Yang R.C., Mao J., Ye Z., Boyle T.J. (1996): POPGENE, the Microsoft Windows-based User-friendly Software for Population Genetic Analysis of Co-dominant and Dominant Markers and Quantitative Traits. Edmonton, Alta, Department of Renewable Resources, Univ. of Alberta: 238.
Zietkiewicz E., Rafalski A., Labuda D. (1994): Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176–183.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti