The mycological study of conifers in Tbilisi and its surroundings

Danelia I., Zaqariashvili N., Amiranashvili L., Badridze G., Kvitsiani S. (2021): The mycological study of conifers in Tbilisi and its surroundings. J. For. Sci., 67: 464–476.

download PDF

Extensive microbiological research was carried out in Tbilisi (capital of Georgia) and its surroundings to determine the causes of massive disease and dieback of urban coniferous plantations. The biological material was picked up in June–July 2020 from trees with various degrees of the disease in 42 different localities. 247 conifers (15 species) were examined microbiologically. 1 169 samples of microscopic fungi were isolated. Based on cultural-morphological and molecular-genetic (PCR) studies, 34 strains were identified to the species level, 17 to the genus level, and 1 strain to the family level. Ascomycota were represented by 15 families and 33 species, Basidiomycota by 1 family and 2 species and Zygomycota by 2 families and 2 species. Among the isolated strains, 9 species were clearly dominant and found in all studied coniferous species: Alternaria alternata (Fr.) Keissl, Sphaeropsis sapinea (Fr.) Dyko & B. Button, Epicoccum nigrum Link., Sordaria lappae Potebnia, Curvularia spp., Dothiorella spp, Nothophoma quercina (Sydow & P. Sydow) Q. Chen & L. Cai, Phoma odoratissimi Q. Chen, Didymella aliena (Fries) Q. Chen & L. Cai. It may be supposed that massive activation of pathogenic fungi is the result of weakening of plant immunity on the background of increasing abiotic stresses in Tbilisi over the years; which led to an imbalance between latent pathogens and host plants and eventually to the depressing consequences of trees dieback.

Abdaladze N., Bregadze N., Ugrekhelidze M. (2019): The city full of diseased trees. Investigative journalists’ team. Available at:
Abdullah A.S., Moffat C.S., Lopez-Ruiz F.J., Gibberd M.R., Hamblin J., Zerihun A. (2017): Host-multi-pathogen warfare: Pathogen interactions in co-infected plants. Frontiers jn Plant Science, 8: 1806.
Agrios G.N. (2005): Plant Pathology. 5th Ed. Amsterdam, Elsevier Academic Press: 922.
Annual of air pollution on the territory of Georgia (2018): Data from the Environmental Pollution Monitoring Department of the National Environment Agency. Tbilisi, National Environmental Agency: 52. Available at: (in Georgian).
Arnold A.E., Lutzoni F. (2007): Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88: 541–549.
Ayoubi N., Soleimani M.J., Zare R., Zafari D. (2017): First report of Curvularia inaequalis and C. spicifera causing leaf blight and fruit rot of strawberry in Iran. Nova Hedwigia, 105: 75–85.
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Sousa F., Amend A., Jumpponen A., Unterseher M., Kristiansson E., Abarenkov K., Bertrand Y.J.K., Sanli K., Eriksson K.M., Vik U., Veldre V., Nilsson R.H. (2013): Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4: 914–919.
Bihon W., Slippers B., Burgess T., Wingfield M.J., Wingfield B.D. (2011): Sources of Diplodia pinea endophytic infections in Pinus patula and P. radiata seedlings in South Africa. Forest Pathology, 41: 370–375.
Brader G., Compant S., Vescio K., Mitter B., Trognitz F., Ma L.J., Sessitsch A. (2017): Ecology and Genomic Insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, 55: 61–83.
Bußkamp J., Langer G.J., Langer E.J. (2020): Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycological Progress, 19: 985–999.
Carroll G. (1988): Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69: 2–9.
Deb D., Khan A., Dey N. (2020): Phoma diseases: Epidemiology and control. Plant Pathology 69: 1203–1217.
Dissanayake A.J., Camporesi E., Hyde K.D., Phillips A.J.L., Fu C.Y., Yan J.Y., Li X.H. (2016): Dothiorella species associated with woody hosts in Italy. Mycosphere, 7: 51–63.
Elizbarashvili M., Elizbarashvili E, Tatishvili M., Elizbarashvili Sh., Meskhia R., Kutaladze N., King L., Keggenhoff I., Khardziani T. (2017): Georgian climate change under global warming conditions. Annals of Agrarian Science, 15: 17–25.
Lagamayo E.N. (2015): Fungal isolation protocol. Available at:
Grunden E., Chen W.D., Crane J.L. (2001): Fungi colonizing microsclerotia of Verticillium dahliae in urban environments. Fungal Diversity, 8: 129–141.
IPCC (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press: 582.
Ivanová H., Pristaš P., Ondrušková E. (2016): Comparison of two Coniochaeta species (C. ligniaria and C. malacotricha) with a new pathogen of black pine needles – Sordaria macrospora. Plant Protection Science, 52: 18–25.
Jentsch A., Kreyling J., Beierkuhnlein C. (2007): A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and the Environment, 5: 365–374.[365:ANGOCE]2.0.CO;2
Jia M., Chen L., Xin H.-L., Zheng C.-J., Rahman K., Han T., Qin L.-P. (2016): A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology, 7: 906.
Kim C.K., Eo J.K., Eom A.H. (2013): Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology, 41: 82–85.
Kim J.-C., Choi G.J., Kim H.T., Kim H.-J., Cho K.Y. (2000): Pathogenicity and pyrenocine production of Curvularia inaequalis isolated from zoysia grass. Plant Disease, 84: 684–688.
Krizsán K., Papp T., Manikandan P., Shobana C.S., Chandrasekaran M., Vágvölgyi C., Kredics L. (2015): Clinical importance of the genus Curvularia. In: Razzaghi-Abyaneh M, Shams-Ghahfarokhi M., Rai M. (eds): Medical Mycology: Current Trends and Future Prospects. Boca Raton, CRC Press: 147–204.
Kusai N.A., Azmi M.M.Z., Zulkifly S., Yusof M.T., Zainudin N.A.I.M. (2016): Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia. Rendiconti Lincei, 27: 205–214.
Linnakoski R., Sugano J., Junttila S., Pulkkinen P., Asiegbu F.O., Forbes K.M. (2017): Effects of water availability on a forestry pathosystem: fungal strain-specific variation in disease severity. Science Reports, 7: 13501.
Mehl J.W.M., Slippers B., Roux J., Wingfield M.J. (2013): Cankers and other diseases caused by the Botryosphaeriaceae. In: Gonthier P., Nicolotti G. (eds): Infectious Forest Diseases. Wallingford, CABI: 298–317.
Mishra Y., Singh A., Batra A., Sharma M.M. (2014): Understanding the biodiversity and biological applications of endophytic fungi: A review. Journal of Microbial and Biochemical Technology, S8: 004.
Müller M.M., Hantula J., Wingfield M., Drenkhan R. (2018): Diplodia sapinea found on Scots pine in Finland. Forest Pathology, 49: e12483.
Newton A.C., Fitt B.D., Atkins S.D., Walters D.R., Daniell T.J. (2010): Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends in Microbiology, 18: 365–373.
Noble J.A., Crow S.A., Ahearn D.G., Kuhn F.A. (1997): Allergic fungal sinusitis in the southeastern USA: involvement of a new agent Epicoccum nigrurn Ehrenb. ex Schlecht. 1824. Journal of Medical and Veterinary Mycology, 35: 405–409.
Pavlov I.N. (2015):Bioticheskie i abioticheskie factory usikhaniya khvoynikh lesov Sibiri i Dalnego Vostoka. Sibirskiy. Ekologocheskiy Jurnal, 4: 537–554. (in Russian)
Phillips A., Alves A., Correia A., Luque J. (2005): Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia, 97: 513–529.
Ribeiro T.H.C., Fernandes-Brum C.N., de Souza C.R., Dias F.A.N., de Almeida-Junior O., de Albuquerque Regina M., de Oliveira K.K.P., dos Reis G. L., Oliveira L. M., de Paula Fernandes F., Torregrosa L., de Souza J.T., Chalfun-Junior A. (2020): Transcriptome analyses suggest that changes in fungal endophyte lifestyle could be involved in grapevine bud necrosis. Scientific Reports, 10: 9514.
Rout N., Nanda B.K., Gangopadhyaya S. (1989): Experimental pheohyphomycosis and mycotoxicosis by Curvularia lunata in albino rats. Indian Journal of Pathology and Microbiology, 32: 1–6.
Sayers E.W., Barrett T., Benson D.A., Bolton E., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Federhen S., Feolo M., Fingerman I.M., Geer L.Y., Helmberg W. et al. (2011): Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 40: D13–D25.
Schulz B., Boyle C. (2005): The endophytic continuum. Mycological Research, 109: 661–686.
Smahi H., Belhoucine-Guezouli L., Berraf-Tebbal A., Chouih S., Arkam M., Franceschini A., Linaldeddu B.T., Phillips A.J.L. (2017): Molecular characterization and pathogenicity of Diplodia corticola and other Botryosphaeriaceae species associated with canker and dieback of Quercus suber in Algeria. Mycosphere, 8: 1261–1272.
Smith M.D. (2011): An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99: 656–663.
Stergiopoulos I., Gordon T.R. (2014): Cryptic fungal infections: the hidden agenda of plant pathogens. Frontiers in Plant Science, 5: 506.
Strobel G. (2018): The emergence of endophytic microbes and their biological promise. Journal of Fungi, 4: 57.
Sutton B.C. (1980): The Coelomycetes. Kew, Commonwealth Mycological Institute: 253.
The Georgian Road Map on Climate Change Adaptation (2016): Available at:
Georgia’s Third National Communication to the UN Framework Convention on Climate Change (2015): Tbilisi, Ministry of Environment and Natural Resources Protection of Georgia: 262.
Tollenaere C., Susi H., Laine A.L. (2016): Evolutionary and epidemiological implications of multiple infection in plants. Trends in Plant Science, 21: 80–90.
Vujanovic V., St-Arnaud M., Barabé D., Thibeault G. (2000): Viability testing of orchid seed and the promotion of colouration and germination. Annals of Botany, 86: 79–86.
Weed A.S., Ayres M.P., Hicke J.A. (2013): Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 83: 441–470.
White T.J., Bruns T., Lee S., Taylor J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds): PCR Protocols. A Guide to Methods and Applications. San Diego, Academic Press: 315—322.
Zhang Z., Schwartz S., Wagner L., Miller W. (2000): A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7: 203–214.
Zheng W., Lehmann A., Ryo M., Vályi K.K., Rillig M.C. (2020): Growth rate trades off with enzymatic investment in soil filamentous fungi. Scientific Reports, 10: 11013.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti