Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe

https://doi.org/10.17221/82/2019-JFSCitation:Vacek S., Prokůpková A., Vacek Z., Bulušek D., Šimůnek V., Králíček I., Prausová R., Hájek V. (2019): Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J. For. Sci., 65: 331-345.
download PDF

The growth, structure and production of mixed beech (Fagus sylvatica L.) forests were analysed  in the Broumovsko Protected Landscape Area, Czech Republic. The objective of the paper was to evaluate stand structure, timber production and dynamics of forests with historically different silvicultural practices in relation to climate conditions, management and game damage. The results indicate that scree forests (coppices and coppices with standards) were stands with high-rich species diversity and structure compared to herb-rich beech forests (high forests) with higher timber production. The Norway spruce (Picea abies [L.] Karst.) was the most sensitive tree species compared to low growth variability in European beech. The climate factors had the highest effect on radial growth from June to August. Natural regeneration showed great density potential (13,880–186,462 recruits·ha–1), especially in expansion of maples and European ash (Fraxinus excelsior L.). However, recruits were seriously limiting by damage caused by hoofed game, especially in silver fir (Abies alba Mill.; 53% browsing damage), wych elm (Ulmus glabra Hudson; 51%) and rowan (Sorbus aucuparia L.; 50%).

References:
Aertsen W., Janssen E., Kint V., Bontemps J.D., Van Orshoven J., Muys B. (2014): Long-term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. Forest Ecology and Management, 312: 252–259. https://doi.org/10.1016/j.foreco.2013.09.034
 
Ammer C. (1996): Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management, 88: 43–53. https://doi.org/10.1016/S0378-1127(96)03808-X
 
Ammer C., Bickel E., Kölling C. (2008): Converting Norway spruce stands with beech – A review on arguments and techniques. Austrian Journal of Forest Science, 125: 3–26.
 
Anderegg W.R.L., Martinez-Vilalta J., Cailleret M., Camarero J.J., Ewers B.E., Galbraith D., Gessler A., Grote R., Huang C., Levick S.R., Powell T.L., Rowland L., Sánchez-Salguero R., Trotsiuk V. (2016): When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. Ecosystems, 19: 1133–1147. https://doi.org/10.1007/s10021-016-9982-1
 
Annighöfer P. (2018): Stress relief through gap creation? Growth response of a shade tolerant species (Fagus sylvatica L.) to a changed light environment. Forest Ecology and Management, 415: 139–147. https://doi.org/10.1016/j.foreco.2018.02.027
 
AOPK (2004): Evropsky významné lokality ČR. CZ0520507 – Kozínek. Praha, AOPK ČR. Available at: http://www.nature.cz/natura2000-design3/web_lokality.php?cast=1804&akce=karta&id=1000145462
 
Bakker J.P., Olff H., Willems J.H., Zobel M. (1996): Why do we need permanent pl ots in the study of long-term vegetation dynamics? Journal of Vegetation Sciences, 7: 147–156. https://doi.org/10.2307/3236314
 
Biggs R., Schlüter M., Biggs D., Bohensky E.L., Burn Silver S., Cundill G., Dakos V., Daw T.M., Evans L.S., Kotschy K., Leitch A.M., Meek C., Quinlan A., Raudsepp-Hearne C., Robards M.D., Schoon M.L., Schultz L., West P.C. (2012): Toward principles for enhancing the residence of ecosystem services. Annual Review of Environment Resources, 37: 421–448. https://doi.org/10.1146/annurev-environ-051211-123836
 
Bílek L., Remeš J., Podrázský V., Rozenbergar D., Diaci J., Zahradník D. (2004): Gap regeneration in near-natural European beech forest stands in Central Bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology, 71: 59–71.
 
Bindoff N.L., Stott P.A., AchutaRao K.M. et al. (2013): Detection and Attribution of Climate Change: from Global to Regional. (ed. by Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M.) Climate change (2013): the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York: 867–952.
 
Biondi F., Waikul K. (2004): Dendroclim 2002: AC++ program for statistical calibration of climate signals in tree ring chronologie. Computers & Geosciences, 30: 303–311.
 
Bolte A., Ammer C., Löf M., Madsen P., Nabuurs G.J., Schall P., Spathelf P., Rock J. (2009): Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24: 473–482. https://doi.org/10.1080/02827580903418224
 
Bolte A., Hilbrig L., Grundmann B., Kampf F., Brunet J., Roloff A. (2010): Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce–beech forest. European Journal of Forest Research, 129: 261–276. https://doi.org/10.1007/s10342-009-0323-1
 
Bontemps J.D., Hervé J.C., Dhôte J.F. (2010): Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecology and Management, 259: 1455–1463. https://doi.org/10.1016/j.foreco.2010.01.019
 
Bošeľa M., Štefančík I., Petráš R., Vacek S. (2016): The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology, 222: 21–31. https://doi.org/10.1016/j.agrformet.2016.03.005
 
Bošeľa M., Lukač M., Castagneri D., Sedmák R., Biber P., Carrer M., Konôpka B., Nola P., Nagel A.T., Popa I., Roibu C.C., Svoboda M., Trotsiuk V., Büntgen U. (2018): Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Science of The Total Environment, 615: 1460–1469. https://doi.org/10.1016/j.scitotenv.2017.09.092
 
Bulušek D., Vacek Z., Vacek S., Král J., Bílek L, Králíček I. (2016): Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. Journal of Forest Science, 62: 293–305. https://doi.org/10.17221/22/2016-JFS
 
Brassard B.W., Chen H.Y.H., Cavard X., Laganière J., Reich P.B., Bergeron Y., Paré D., Yuan Z. (2013): Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 101: 210–219. https://doi.org/10.1111/1365-2745.12023
 
Braun S., Thomas V.F., Quiring R., Flückiger W. (2010): Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollutions, 158: 2043–2052. https://doi.org/10.1016/j.envpol.2009.11.030
 
Cavin L., Mountford E.P., Peterken G.F., Jump A.S. (2013): Extreme drought alters competitive dominance within and between species in a mixed forest stand. Functional Ecology, 27: 1424–1435. https://doi.org/10.1111/1365-2435.12126
 
Cole C.T., Anderson J.E., Lindroth R.L., Waller D.M. (2010): Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Global Change Biology, 16: 2186–2197. https://doi.org/10.1111/j.1365-2486.2009.02103.x
 
Conte E., Lombardi F., Battipaglia G., Palombo C., Altieri S., La Porta N., Marchetti M., Tognetti R. (2018): Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy). Forest Ecology and Management, 409: 707–718. https://doi.org/10.1016/j.foreco.2017.12.011
 
Coomes D.A., Flores O., Holdaway R., Jucker T., Lines E.R., Vanderwel M.C. (2014): Wood production response to climate change will depend critically on forest composition and structure. Global Change Biology, 20: 3632–3645. https://doi.org/10.1111/gcb.12622
 
Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. (2019a): Effects of Bark Stripping on Timber Production and Structure of Norway Spruce Forests in Relation to Climatic Factors. Forests, 10 (4): 320. https://doi.org/10.3390/f10040320
 
Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek S. (2019b): Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS One 14 (8): e0221082. https://doi.org/10.1371/journal.pone.0221082
 
Čermák P., Horsák P., Špiřík M., Mrkva R. (2009): Relationships between browsing damage and woody species dominance. Journal of Forest Science, 55: 23–31. https://doi.org/10.17221/73/2008-JFS
 
De Dios V.R., Fischer C., Colinas C. (2007): Climate change effects on Mediterranean forests and preventive measures. New Forests, 33: 29–40. https://doi.org/10.1007/s11056-006-9011-x
 
del Río M., Schütze G., Pretzsch H. (2014): Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biology, 16: 166–176. https://doi.org/10.1111/plb.12029
 
Dittmar C., Zech W., Elling W. (2003): Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. Forest Ecology and Management, 173: 63–78. https://doi.org/10.1016/S0378-1127(01)00816-7
 
Dulamsuren C., Hauck M., Kopp G., Ruff M., Leuschner C. (2017): European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees, 31: 673–686. https://doi.org/10.1007/s00468-016-1499-x
 
Forrester D.I., Albrecht A.T. (2014): Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. Forest Ecology and Management, 328: 94–102. https://doi.org/10.1016/j.foreco.2014.05.026
 
Fürst C., Vacik H., Lorz C., Makeschin F., Podrázký V., Janeček V. (2007): Meeting the challenges of process-oriented forest management. Forest Ecology and Management, 248: 1–5. https://doi.org/10.1016/j.foreco.2007.02.031
 
Gessler A., Keitel C., Kreuzwieser J., Matyssek R., Seiler W., Rennenberg H. (2007): Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21: 1–11. https://doi.org/10.1007/s00468-006-0107-x
 
Guth J., Kučera T. (2005): Natura 2000 habitat mapping in the Czech Republic: methods and general results. Ekológia (Bratislava), 24 (1): 39-51.
 
Hampe A., Petit R.J. (2005): Conserving biodiversity under climate change: the real edge matters. Ecology Letters, 8: 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x
 
Hanewinkel M., Cullmann D.A., Schelhaas M.J., Nabuurs G.J., Zimmermann N.E. (2013): Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3: 203–207. https://doi.org/10.1038/nclimate1687
 
Hlásny T., Barcza Z., Fabrika M., Balázs B., Churkina G., Pajtík J., Sedmák R., Turčáni M. (2011): Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research, 47: 219–236. https://doi.org/10.3354/cr01024
 
Ives A.R., Carpenter S.R. (2007): Stability and diversity of ecosystems. Science, 317: 58–62. https://doi.org/10.1126/science.1133258
 
Jump A.S., Hunt J.M., Penuelas J. (2006): Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12: 2163–2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x
 
Knibbe B. (2007): PAST 4: personal analysis system for treering research, Version 4.2., SCIEM, Vienna.
 
Knoke T., Ammer C., Stimm B., Mosandl R. (2008): Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. European Journal of Forest Reseach, 127: 89–101. https://doi.org/10.1007/s10342-007-0186-2
 
Kolář T., Čermák P., Trnka M., Žid T., Rybníček M. (2017): Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agricultural and Forest Meteorology, 239: 24–33. https://doi.org/10.1016/j.agrformet.2017.02.028
 
Konôpka J., Kaštier P., Konôpka B. (2015): Teoretické východiská a praktické opatrenia na harmonizáciu záujmov lesného hospodárstva a poľovníctva na Slovensku. Lesnícky časopis – Forestry Journal, 61: 114–123.
 
Korpeľ S. (1995): Die Urwälder der Westkarpaten., Berlin, Germany: Gustav Fischer.
 
Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., Šamonil P. (2010): Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. Forest Ecology and Management, 260: 2196–2203. https://doi.org/10.1016/j.foreco.2010.09.020
 
Králíček I., Vacek Z., Vacek S., Remeš J., Bulušek D., Král J., Štefančík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 121–139. https://doi.org/10.12657/denbio.077.010
 
Kunz J., Löffler G., Bauhus J. (2018): Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 414: 15–27. https://doi.org/10.1016/j.foreco.2018.02.016
 
Lambers H., Chapin F.S., Pons T.L. (2008): Plant Physiological Ecology, second ed. Springer, New York.
 
Landuyt D., Perring M.P., Seidl R., Taubert F., Verbeeck H., Verheyen K. (2018): Modelling understorey dynamics in temperate forests under global change–challenges and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 31: 44–54. https://doi.org/10.1016/j.ppees.2018.01.002
 
Leuschner C., Ellenberg H. (2017): Ecology of Central European Forests. Vegetation Ecology of Central Europe, vol. I. Springer Nature, Cham.
 
Lévesque M., Walthert L., Weber P. (2016): Soil nutrients influence growth response of temperate tree species to drought. Journal of Ecology, 104: 377–387. https://doi.org/10.1111/1365-2745.12519
 
Linder M. (2000): Developing adaptive forest management strategies to cope with chmate change. Tree Physiology, 20: 299–307. https://doi.org/10.1093/treephys/20.5-6.299
 
Lloret F., Escudero A., Iriondo J.M., Martínez-Vilalta J., Valladares F. (2012): Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 18: 797–805. https://doi.org/10.1111/j.1365-2486.2011.02624.x
 
Matyssek R., Wieser G., Ceulemans R., Rennenberg H., Pretzsch H., Haberer K., Low M., Nunn A., Werner H., Wipfler P. (2010): Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg forest. Environmental Pollutions, 158: 2527–2532. https://doi.org/10.1016/j.envpol.2010.05.009
 
Morin X., Fahse L., Scherer-Lorenzen M., Bugmann H. (2011): Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14: 1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x
 
Ngo Bieng M.A., Perot T., de Coligny F., Goreaud F. (2013): Spatial pattern of trees influences species productivity in a mature oak–pine mixed forest. European Journal of Forest Research, 132: 841–850. https://doi.org/10.1007/s10342-013-0716-z
 
Paluch J.G. (2007): The spatial pattern of a natural European beech (Fagus sylvatica L.) – silver fir (Abies alba Mill.) forest: a patch mosaic perspective. Forest Ecology and Management, 253: 161–170. https://doi.org/10.1016/j.foreco.2007.07.013
 
Peñuelas J., Hunt J.M., Ogaya R., Jump A.S. (2008): Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming atlow altitudes. Global Change Biology, 14: 1076–1088. https://doi.org/10.1111/j.1365-2486.2008.01563.x
 
Petráš R., Pajtík J. (1991): Sústava česko-slovenských objemových tabuliek drevín. Lesnický časopis, 37: 49–56.
 
Petritan A.M., von Lüpke B., Petritan I.C. (2007): Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry, 80: 397–412. https://doi.org/10.1093/forestry/cpm030
 
Petritan A.M., von Lüpke B., Petritan I.C. (2009): Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. European Journal of Forest Reseach 128: 61–74. https://doi.org/10.1007/s10342-008-0239-1
 
Podlaski R. (2006): Suitability of the selected statistical distributions for fitting diameter data in distinguished development stages and phases of near-natural mixed forests in the Świętokrzyski National Park (Poland). Forest Ecology and Management, 236: 393–402. https://doi.org/10.1016/j.foreco.2006.09.032
 
Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. (2012): Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193: 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
 
Pretzsch H., Schütze G. (2009): Transgressive overyielding in mixed compared withpure stands of Norway spruce and European beech in Central Europe: evidenceon stand level and explanation on individual tree level. European Journal of Forest Research, 128:183–204. https://doi.org/10.1007/s10342-008-0215-9
 
Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.P., Kohnle U., Nagel J., Spellmann H., Zasada M., Zingg A. (2013a): Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132: 263–280. https://doi.org/10.1007/s10342-012-0673-y
 
Pretzsch H., Schütze G., Uhl E. (2013b): Resistance of European tree species todrought stress in mixed versus pure forests: evidence of stress release byinter-specific facilitation. Plant Biology, 15: 483–495, https://doi.org/10.1111/j.1438-8677.2012.00670.x
 
Pretzsch H., Rötzer T., Matyssek R., Grams T.E.E., Häberle K.H., Pritsch K., Kerner R., Munch J.C. (2014a): Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: From reaction pattern to mechanism. Trees Structure and Function, 28: 1305–1321. https://doi.org/10.1007/s00468-014-1035-9
 
Pretzsch H., Biber P., Schütze G., Uhl E., Rötzer T. (2014b): Forest stand growth dynamics in Central Europe has accelerated since 1870. Nature Communications, 5: 4967. https://doi.org/10.1038/ncomms5967
 
Quitt E. (1971): Klimatické oblasti Československa. Academia, Studia Geographica 16, Brno
 
Rabasa S.G., Granda E., Benavides R., Kunstler G., Espelta J.M., Ogaya R., Peñuelas J., Scherer-Lorenzen M., Gil W., Grodzki W., Ambrozy S., Bergh J., Hódar J.A., Zamora R., Valladares F. (2013): Disparity in elevational shifts of European trees in response to recent climate warming. Global Change Biology, 19: 2490–2499. https://doi.org/10.1111/gcb.12220
 
Rammer W., Seidl R. (2015): Coupling human and natural systems: simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change, 35: 475–485. https://doi.org/10.1016/j.gloenvcha.2015.10.003
 
Rigling A., Bigler C., Eilmann B., Feldmeyer-Christe E., Gimmi U., Ginzler C., Graf U., Mayer P., Vacchiano G., Weber P., Wohlgemuth T., Zweifel R., Dobbertin M. (2013): Driving factors of a vegetation shift from Scots pine to pubescent oakin dry Alpine forests. Global Change Biology, 19: 229–240. https://doi.org/10.1111/gcb.12038
 
Rijkers T., Pons T.L., Bongers F. (2000): The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology, 14: 77–86. https://doi.org/10.1046/j.1365-2435.2000.00395.x
 
Schütz J.P. (2001): Der Plenterwald und weitere Formen strukturierter und gemischter Wälder. Parey Buchverlag, Berlin.
 
Schweingruber F.H. (1996): Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf.
 
Sicard P., Augustaitis A., Belyazid S., Calfapietra C., de Marco A., Fenn M., Bytnerowicz A., Grulke N., Serengil Y. (2016): Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environmental Pollution, 213: 977–987. https://doi.org/10.1016/j.envpol.2016.01.075
 
Stenger A., Harou P., Navrud S. (2009): Valuing environmental goods and services derived from the forests. Journal of Forest Economics, 15: 1–14. https://doi.org/10.1016/j.jfe.2008.03.001
 
Szymura T.H., Szymura M., Pietrzak M. (2013): Influence of land relief and soil properties on stand structure of overgrown oak forests of coppice origin with Sorbus torminalis. Dendrobiology, 71: 49–58. https://doi.org/10.12657/denbio.071.005
 
Tegel W., Seim A., Hakelberg D., Hoffmann S., Panev M., Westphal T., Büntgen U. (2014): A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 133: 61–71. https://doi.org/10.1007/s10342-013-0737-7
 
Tolasz R., Míková T., Valeriánová T., Voženílek V. (ed) (2007): Climate atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Olomouc.
 
Tylianakis J.M., Didham R.K., Bascompte J., Wardle D.A. (2008): Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11: 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
 
Vacek S., Moucha P. et al. (2012): Péče o lesní ekosystémy v chráněných územích ČR. Ministerstvo životního prostředí, Praha: 896.
 
Vacek S., Vacek Z., Podrázský V., Bílek L., Bulušek D., Štefančík I., Remeš J., Štícha V., Ambrož R. (2014a): Structural diversity of autochthonous beech forests in broumovské Stěny national nature reserve Czech Republic. Austrian Journal of Forest Science, 131: 191–214.
 
Vacek S., Bulušek D., Vacek Z., Bílek L., Schwarz O., Simon J., Štícha V. (2015): The role of shelterwood cutting and protection against game browsing for the regeneration of silver fir. Austrian Journal of Forest Science 132: 81–102.
 
Vacek S., Černý T., Vacek Z., Podrázský V., Mikeska M., Králíček I. (2017): Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management, 398: 75–90. https://doi.org/10.1016/j.foreco.2017.05.001
 
Vacek Z., Vacek S., Bílek L., Král J., Remeš J., Bulušek D., Králíček I. (2014b): Ungulate Impact on Natural Regeneration in Spruce-Beech-Fir Stands in Černý důl Nature Reserve in the Orlické Hory Mountains, Case Study from Central Sudetes. Forests, 5 (11): 2929–2946. https://doi.org/10.3390/f5112929
 
Vacek Z., Vacek S., Podrázský V., Král J., Bulušek D., Putalová T., Baláš M., Kalousková I., Schwarz O. (2016): Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology, 75: 31–44. https://doi.org/10.12657/denbio.075.004
 
Vacek Z. (2017): Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal, 63: 23–34. https://doi.org/10.1515/forj-2017-0006
 
Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019): Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129–144. https://doi.org/10.2478/forj-2019-0013
 
Vitali V., Büntgen U., Bauhus J. (2017): Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology, 23: 5108–5119. https://doi.org/10.1111/gcb.13774
 
von Oheimb G., Westphal C., Tempel H., Härdtle W. (2005): Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). Forest Ecology and Management, 212: 253–263. https://doi.org/10.1016/j.foreco.2005.03.033
 
Wang W., Peng C., Kneeshaw D.D., Larocque G.R., Luo Z. (2012): Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 20: 109–121. https://doi.org/10.1139/a2012-004
 
Yamaguchi D.K. (1991): A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21: 414–416. https://doi.org/10.1139/x91-053
 
Yurtseven I., Serengil Y., Gökbulak F., Şengönül K., Ozhan S., Kılıç U., Uygur B., Ozçelik MS (2018): Results of a paired catchment analysis of forest thinning in Turkey in relation to forest management options. Science of The Total Environment 618: 785–792. https://doi.org/10.1016/j.scitotenv.2017.08.190
 
Zeibig A., Diaci J., Wagner S. (2005): Gap disturbance patterns of a Fagus sylvatica virgin forest remnant in the mountain vegetation belt of Slovenia. Forest Snow and Landscape Research, 79: 69–80.
 
Zenner E.K., Sagheb-Talebi K., Akhavan R., Peck J.E. (2015): Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (Fagus orientalis Lipsky) forests at the multi-gap scale. Forest Ecology and Management, 335: 26-36. https://doi.org/10.1016/j.foreco.2014.09.023
 
Zimmermann J., Hauck M., Dulamsuren C., Leuschner C. (2015): Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems, 18: 560–572. https://doi.org/10.1007/s10021-015-9849-x
 
download PDF

© 2019 Czech Academy of Agricultural Sciences