Stem production of Scots pine and black locust stands in Ukraine’s Northern Steppe V., Lakyda P., Sytnyk S., Lakyda I., Gritzan Y., Hetmanchuk A. (2019): Stem production of Scots pine and black locust stands in Ukraine’s Northern Steppe. J. For. Sci., 65: 461-471.
download PDF

Abstract: The research paper presents the results of the assessment of the annual stem production of Scots pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands within the Northern Steppe of Ukraine. The research team has developed two- and three-factor regression models for assessing the live biomass stocks for the fractions of the wood and bark of the stems of the Scots pine and black locust stands. The paper also presents the dependences of the live biomass of the components of the stems of the stands on their selected biometric parameters. The direct positive correlation between the fractions of the wood, bark, and stem in total with the factors of age, mean diameter, mean height and stand density for both the studied species has been identified. The results include the distribution of the total stem production of the Scots pine and black locust stands by the state forestry enterprises of the Dnipro region. The mean annual stem production of Scots pine is characterised by lower values (stem wood –2.91 t·ha–1·yr–1, stem bark –0.38 t·ha–1·yr–1) compared with the investigated species – black locust with the stem wood 4.94 t·ha–1·yr–1 and stem bark 1.70 t·ha–1·yr–1.

Bencat T. (1990): Porovnanie nadzemnej biomasy borovice sosny (Pinus sylvestris L.) a agatu bieleho (Robinia pseudoacacia L.) na Zahori. Lesnictvi, 36: 355–636. (in Slovak)
Chave J., Condit R., Lao S., Casoersen J., Foster D., Hubbell S. (2003): Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91: 240–252.
Chave D. (2014): Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20: 3177–3190.
Falster D., Westoby M. (2005): Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos, 111: 57–66.
Feldpausch T. R., Banin L., Phillips O. L., Baker T. R., Lewis S. L., Quesada C. A., Affum-Baffoe K., Arets E. J. M. M., Berry N. J., Bird M., Brondizio E. S, de Camargo P., Chave J., Djagbletey G., Domingues T. F., Drescher M., Fearnside P. M., Franca M. B., Fyllas N. M., Lopez-Gonzalez G., Hladik A., Higuchi N., Hunter M. O., Iida Y., Salim K. A., Kassim A. R., Keller M., Kemp J., King D. A., Lovett J. C., Marimon B. S., Marimon-Junior B. H., Lenza E., Marshall A. R., Metcalfe D. J., Mitchard E. T. A., Moran E. F., Nelson B. W., Nilus R., Nogueira E. M., Palace M., Patiño S., Peh K. S.H., Raventos M. T., Reitsma J. M., Saiz G., Schrodt, F., Sonke B., Taedoumg H. E., Tan S., White L., Woll H., Lloyd J. (2011): Height-diameter allometry of tropical forest trees. Biogeosciences, 8: 1081–1106.
Forrester D. I., Tachauer I. H., Annighoefer P., Barbeito I., Pretzsch H., Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G.W. (2017): Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecological Management, 396: 160–175.
Gold S., Korotkov A., Sasse V. (2006): The development of European forest resources, 1950 to 2000. Forest Policy Economics, 8: 183–192.
Henry H.A.L., Aarssen L.W. (1999): The interpretation of stem diameter-height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecology Letters, 2: 89–97.
Jagodziński A.M., Oleksyn J. (2009a): Ecological consequences of silviculture at variable stand densities. II. Biomass production and allocation, nutrient retention. Sylwan, 3: 147–157.
Jagodziński A.M., Oleksyn J. (2009b): Ecological consequences of silviculture at variable stand densities. I. Stand growth and development. Sylwan, 2: 75–85.
Jagodziński A., Dyderski M., Gęsikiewicz K., Horodecki P. (2019): Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science, 76: 55–69.
Jagodziński A., Dyderski M., Gęsikiewicz K., Horodecki P. (2019): Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research, 138: 673–683.
Kellomiki S., Kolstrom M. (1994): The influence of climate change on the productivity of Scots pine, Norway spruce, Pendula birch and Pubescent birch in southern and northern Finland. Forest Ecology and Management, 65: 201–217.
Kempes C.P., West G.B., Crowell K., Girvan M. (2011): Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PloS ONE, 6: e20551.
King D.A. (1990): The adaptive significance of tree height. American Naturalist, 135: 809–828.
Kohyamaa T., Kohyamaa T., Sheilb D. (2019): Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. Forest Ecology and Management, 433: 729–740.
Knust C., Schua K, Feger K. H. (2016): Estimation of nutrient exports resulting from thinning and intensive biomass extraction in medium-aged spruce and pine stands in Saxony, Northeast Germany. Forests, 7: 302–315.
Larcher W. (1994): Ökophysiologie der pflanzen: Leben, leistung und stressbewältigung der pflanzen in ihrer umwelt. Aufl. Ulmer Stuttgart, UTB für Wissenschaft: 394.
Lakyda P., Shvidenko A., Bilous A., Myroniuk V., Matsala M., Zibtsev S., Schepaschenko D., Holiaka D., Vasylyshyn R., Lakyda I., Diachuk P., Kraxner F. (2019): Impact of Disturbances on the Carbon Cycle of Forest Ecosystems in Ukrainian Polissya. Forests, 10: 337.
Malkonen E. (1974): Annual primary production and nutrient cycle in some Scots pine stands. Communicationes Instituti Forestalis Fenniae. Helsinki, 84: 1–87.
McMahon S., Parker G., Miller R.D. (2010): Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences, 107: 3611–3615.
Mugasha W.A., Bollandsås O.M., Eid T. (2013): Relationships between diameter and height of trees for natural tropical forest in Tanzania. Southern Forest, 75: 221–237.
Mugasha W.A., Eid T., Bollandsås O.M., Malimbwi R.E., Chamshama S.A.O., Zahabu E., Katani J.Z. (2013): Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 148: 87–101.
Nord-Larsen T., Nielsen A. T. (2015): Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark. Scandinavian Journal Forest Recourses, 30: 135–153.
Pretzsch H. (2009): Forest dynamics, growth and yield: from measurement to model. Berlin Heidelberg, Springer-Verlag: 664.
Searle E., Chen H. (2017): Tree size thresholds produce biased estimates of forest biomass dynamics. Forest Ecology and Management, 400: 468–474.
Sindani K. T., Lejoly J. (1990): Phytomasses et productivites de 4 peuplements forestiers dans les environs de Peyresq (Alpes de Haute-Provence, France). Belgian Journal of Botany, 123 (1–2): 103–116.
Spiecker H., Mielikainen K., Kohl M., Skovsgaard J. P. (1996): Growth trends in European forests. Research Report 5. European Forest Institute, Springer: 372.
Sytnyk S., Lovynska V., Lakyda P., Maslikova K. (2018): Basic density and crown parameters of forest forming species within Steppe zone in Ukraine. Folia Oecologica, 45: 82–91.
Utkin A. I., Atiskov N. V., Ermolova L. S., Vatkovsky O. S., Oskina N. V. (1980): Biological productivity of Scots pine and Siberian larch in the Kuibyshev Trans-Volga region. Russian Journal of Forest Science, 2: 21–31.
Vyskot M. (1983): Young Scots pine in biomass. Rozpravy Československé Academie věd - řada matematických a přírodních věd, 93: 1–148.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti