Finding an imprint of solar and climatic cycles in tree rings of European beech (Fagus sylvatica L.)

https://doi.org/10.17221/94/2020-JFSCitation:

Šimůnek V., Hájek V., Prokůpková A., Gallo J. (2021): Finding an imprint of solar and climatic cycles in tree rings of European beech (Fagus sylvatica L.). J. For. Sci., 67: 409–419.

download PDF

The present study is focused on European beech (Fagus sylvatica L.) growth in eastern Bohemia in the Broumovské stěny National Nature Reserve, Czech Republic. The objective of this research was to develop an evaluation of European beech radial growth in relation to solar activity (number of sunspots), air temperature in the growing season, annual precipitation and air pollution (SO2 depositions). The highest positive significant correlation coefficient was found between radial growth of European beech and number of sunspots, followed by the correlation with air temperature in the growing season. The radial growth showed a negative significant correlation with SO2 depositions. The correlation of the radial growth indicates that precipitation and sunspots have a lower correlation coefficient with beech growth than seasonal temperature during an air pollution disaster in the 21st solar cycle. Radial growth, precipitation total and air temperature in the growing season were processed by spectral analysis for the evaluation of periodic cycles. The 7.5- to 11-year cycles were observed in air temperature and in sunspot cycles. Precipitation and air temperature in the growing season indicate a higher frequency at 3.7-year cycles. The long-term periodicity of radial growth was influenced by both solar activity and fluctuations of growing-season air temperature.

References:
Adolphi F., Muscheler R., Svensson A., Aldahan A., Possnert G., Beer J., Sjolte J., Björck S., Matthes K., Thiéblemont R. (2014): Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nature Geoscience, 7: 662–666.  https://doi.org/10.1038/ngeo2225
 
Al-Tameemi M.A., Chukin V.V. (2016): Global water cycle and solar activity variations. Journal of Atmospheric and Solar-Terrestrial Physics, 142: 55–59. https://doi.org/10.1016/j.jastp.2016.02.023
 
Baker J.C.A., Gloor M., Boom A., Neill D.A., Cintra B.B.L., Clerici S.J., Brienen R.J.W. (2018): Questioning the influence of sunspots on Amazon hydrology: Even a broken clock tells the right time twice a day. Geophysical Research Letters, 45: 1419–1422.  https://doi.org/10.1002/2017GL076889
 
Bogdziewicz M., Szymkowiak J., Fernández-Martínez M., Peñuelas J., Espelta J.M. (2019): The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agricultural and Forest Meteorology, 268: 109–115. https://doi.org/10.1016/j.agrformet.2019.01.016
 
Breckle S.W., Kahle H. (1992): Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetatio, 101: 43–53. https://doi.org/10.1007/BF00031914
 
Brugnara Y., Brönnimann S., Luterbacher J., Rozanov E. (2013): Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmospheric Chemistry and Physics, 13: 6275–6288. https://doi.org/10.5194/acp-13-6275-2013
 
Bulušek D., Vacek Z., Vacek S., Král J., Bílek L., Králíček I. (2016): Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. Journal of Forest Science, 62: 293–305. https://doi.org/10.17221/22/2016-JFS
 
Bunn A., Korpela M. (2018a): Chronology building in dplR. Available at: https://cran.r-project.org/web/packages/dplR/vignettes/chron-dplR.pdf
 
Bunn A., Korpela M. (2018b): Time series analysis in dplR. Available at: http://cran.nexr.com/web/packages/dplR/vignettes/timeseries-dplR.pdf
 
Cukor J., Vacek Z., Linda R., Bílek L. (2017): Carbon sequestration in soil following afforestation of former agricultural land in the Czech Republic. Central European Forestry Journal, 63: 97–104. https://doi.org/10.1515/forj-2017-0011
 
Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. (2019): Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests, 10: 320. https://doi.org/10.3390/f10040320
 
Cukor J., Zeidler A., Vacek Z., Vacek S., Šimůnek V., Gallo J. (2020): Comparison of growth and wood quality of Norway spruce and European larch: effect of previous land use. European Journal of Forest Research, 139: 459–472. https://doi.org/10.1007/s10342-020-01259-7
 
Dittmar C., Zech W., Elling W. (2003): Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – A dendroecological study. Forest Ecology and Management, 173: 63–78. https://doi.org/10.1016/S0378-1127(01)00816-7
 
Dorotovič I., Louzada J.L., Rodrigues J.C., Karlovský V. (2014): Impact of solar activity on the growth of pine trees: Case study. European Journal of Forest Research, 133: 639–648. https://doi.org/10.1007/s10342-014-0792-8
 
Drobyshev I., Övergaard R., Saygin I., Niklasson M., Hickler T., Karlsson M., Sykes M.T. (2010): Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management, 259: 2160–2171.  https://doi.org/10.1016/j.foreco.2010.01.037
 
Dulamsuren C., Hauck M., Kopp G., Ruff M., Leuschner C. (2017): European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees, 31: 673–686. https://doi.org/10.1007/s00468-016-1499-x
 
Easterbrook D.J. (2016): Cause of global climate changes: Correlation of global temperature, sunspots, solar irradiance, cosmic rays, and radiocarbon and berylium production rates. In: Easterbrook D.J. (ed): Evidence-Based Climate Science: Data Opposing CO2 Emissions as Primary Source of Global Warming. 2nd Ed. Amsterdam, Elsevier: 245–262.
 
Fritts H.C. (1976): Tree Rings and Climate. London, Academic Press: 567.
 
Gallo J., Kuneš I., Baláš M., Nováková O., Drury M.L. (2014): Occurrence of frost episodes and their dynamics in height gradient above the ground in the Jizerské hory Mts. Journal of Forest Science, 60: 35–41. https://doi.org/10.17221/83/2013-JFS
 
Gallo J., Baláš M., Linda R., Kuneš I. (2017): Growth performance and resistance to near-ground late frosts of Fagus sylvatica L. plantation treated by a brassinosteroid compound. Journal of Forest Science 63: 117–125. https://doi.org/10.17221/67/2016-JFS
 
Gallo J., Baláš M., Linda R., Cukor J., Kuneš I. (2018a): Iniciální zhodnocení experimentální výsadby s bukovými poloodrostky nové generace na živném a vysýchavém stanovišti v lokalitě Vintířov-Sedlec. In: Baláš M., Podrázský V., Gallo J. (eds): Proceedings of Central European Silviculture. Volume 8: Silviculture in Central Europe, Doksy, Sept 4–5, 2018: 39–46. (in Czech)
 
Gallo J., Kuneš I., Baláš M. (2018b): Contribution of reforestation using saplings to conservation of forest ecosystems. Wildlanka, 6: 100–107.
 
Gray L.J., Woollings T.J., Andrews M., Knight J. (2016): Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Quarterly Journal of the Royal Meteorological Society 142: 1890–1903. https://doi.org/10.1002/qj.2782
 
Hájek V., Vacek Z., Vacek S., Bílek L., Prausová R., Linda R., Bulušek D., Králíček I. (2020): Changes in diversity of protected scree and herb-rich beech forest ecosystems over 55 years. Central European Forestry Journal, 66: 202–217.
 
Hathaway D.H. (2015): The solar cycle. Living Reviews in Solar Physics, 12: 4. https://doi.org/10.1007/lrsp-2015-4
 
Haywood J., Boucher O. (2000): Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38: 513–543. https://doi.org/10.1029/1999RG000078
 
Jayaraman A., Lubin D., Ramachandran S., Ramanathan V., Woodbridge E., Collins W.D., Zalpuri K.S. (1998): Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. Journal of Geophysical Research, 103: 13827–13836. https://doi.org/10.1029/98JD00559
 
Kadonaga L.K., Podlaha O., Whiticar M.J. (1999): Time series analyses of tree ring chronologies from Pacific North America: Evidence for sub-century climate oscillations. Chemical Geology, 161: 339–363.  https://doi.org/10.1016/S0009-2541(99)00094-7
 
Kasatkina E.A., Shumilov O.I., Timonen M. (2019): Solar activity imprints in tree ring-data from northwestern Russia. Journal of Atmospheric and Solar-Terrestrial Physics, 193: 105075. https://doi.org/10.1016/j.jastp.2019.105075
 
Kniveton D.R. (2004): Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. Journal of Atmospheric and Solar-Terrestrial Physics, 66: 1135–1142.  https://doi.org/10.1016/j.jastp.2004.05.010
 
Komitov B., Kaftan V. (2019): Annual beech (Fagus sylvatica) growth rings and solar-related climate variations in the Central and Western Balkans in the 18th–21st centuries. Geomagnetism and Aeronomy, 59: 926–934. https://doi.org/10.1134/S001679321907017X
 
Korpeľ Š. (1995): Die Urwälder der Westkarpaten. Stuttgart, Gustav Fischer Verlag: 310. (in German)
 
Kraft G. (1884): Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Klindworth: 147. (in German)
 
Král J., Vacek S., Vacek Z., Putalová T., Bulušek D., Štefančík I. (2015): Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. Lesnícky časopis – Forestry Journal, 61: 175–187. https://doi.org/10.1515/forj-2015-0026
 
Králíček I., Vacek Z., Vacek S., Remeš J., Bulušek D., Král J., Štefančík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 119–137.  https://doi.org/10.12657/denbio.077.010
 
Kristoufek L. (2017): Has global warming modified the relationship between sunspot numbers and global temperatures? Physica A: Statistical Mechanics and its Applications, 468: 351–358.  https://doi.org/10.1016/j.physa.2016.10.089
 
Kumar V., Dhaka S.K., Panwar V., Singh N., Rao A.S., Malik S., Yoden S. (2018): Detection of solar cycle signal in the tropospheric temperature using COSMIC data. Current Science, 115: 2232–2239. https://doi.org/10.18520/cs/v115/i12/2232-2239
 
Ligges U., Short T., Kienzle P., Schnackenberg S., Billinghurst D., Borchers H.-W., Carezia A., Dupuis P., Eaton J.W., Farhi E., Habel K., Hornik K., Krey S., Lash B., Leisch F., Mersmann O., Neis P., Ruohio J., Smith III J.O., Stewart D., Weingessel A. (2015): Package ‘signal‘. Available at: https://cran.r-project.org/web/packages/signal/index.html
 
Livingston W., Penn M. (2009): Are sunspots different during this solar minimum? Eos, 90: 257–258.  https://doi.org/10.1029/2009EO300001
 
Lockwood M., Owens M., Hawkins E., Jones G.S., Usoskin I. (2017): Frost fairs, sunspots and the Little Ice Age. Astronomy & Geophysics, 58: 2.17–2.23.
 
Lüdecke H.J., Cina R., Dammschneider H.J., Lüning S. (2020): Decadal and multidecadal natural variability in European temperature. Journal of Atmospheric and Solar-Terrestrial Physics, 205: 105294. https://doi.org/10.1016/j.jastp.2020.105294
 
Ma H., Chen H., Gray L., Zhou L., Li X., Wang R., Zhu S. (2018): Changing response of the North Atlantic/European winter climate to the 11 year solar cycle. Environmental Research Letters, 13: 034007. https://doi.org/10.1088/1748-9326/aa9e94
 
Maghrabi A., Kudela K. (2019): Relationship between time series cosmic ray data and aerosol optical properties: 1999–2015. Journal of Atmospheric and Solar-Terrestrial Physics, 190: 36–44. https://doi.org/10.1016/j.jastp.2019.04.014
 
Maringer J., Wohlgemuth T., Hacket-Pain A., Ascoli D., Berretti R., Conedera M. (2020): Drivers of persistent post-fire recruitment in European beech forests. Science of The Total Environment, 699: 134006. https://doi.org/10.1016/j.scitotenv.2019.134006
 
Matveev S.M., Chendev Y.G., Lupo A.R., Hubbart J.A., Timashchuk D.A. (2017): Climatic changes in the East-European forest-steppe and effects on Scots pine productivity. Pure and Applied Geophysics, 174: 427–443. https://doi.org/10.1007/s00024-016-1420-y
 
Mauas P.J.D., Buccino A.P., Flamenco E. (2016): Solar activity forcing of terrestrial hydrological phenomena. Proceedings of the International Astronomical Union, 12: 180–191. https://doi.org/10.1017/S1743921317003933
 
Müller-Haubold H., Hertel D., Leuschner C. (2015): Climatic drivers of mast fruiting in European beech and resulting C and N allocation shifts. Ecosystems, 18: 1083–1100.  https://doi.org/10.1007/s10021-015-9885-6
 
Ormes J.F. (2018): Cosmic rays and climate. Advances in Space Research, 62: 2880–2891.  https://doi.org/10.1016/j.asr.2017.07.028
 
Podrázský V., Zahradník D., Remeš J. (2014): Potential consequences of tree species and age structure changes of forests in the Czech Republic – review of forest inventory data. Wood Research, 59: 483–490.
 
Pretzsch H., Bielak K., Block J., Bruchwald A., Dieler J., Ehrhart H.-P., Kohnle U., Nagel J., Spellmann H., Zasada M., Zingg A. (2013): Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132: 263–280. https://doi.org/10.1007/s10342-012-0673-y
 
Príncipe A., van der Maaten E., van der Maaten-Theunissen M., Struwe T., Wilmking M., Kreyling J. (2017): Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany. Trees, 31: 743–751. https://doi.org/10.1007/s00468-016-1505-3
 
Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65: 21–33.
 
Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456–464. https://doi.org/10.17221/75/2015-JFS
 
Rezaie N., D’Andrea E., Bräuning A., Matteucci G., Bombi P., Lauteri M. (2018): Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings. Tree Physiology, 38: 1110–1126. https://doi.org/10.1093/treephys/tpy025
 
Rigozo N.R., Nordemann D.J.R., Echer E., Zanandrea A., Gonzalez W.D. (2002): Solar variability effects studied by tree-ring data wavelet analysis. Advances in Space Research, 29: 1985–1988.  https://doi.org/10.1016/S0273-1177(02)00245-4
 
Rinntech (2010): TSAP-WINTM: Time series analysis and presentation for dendrochronology and related applications. Available at: http://www.rinntech.com
 
Rozas V. (2003): Regeneration patterns, dendroecology, and forest-use history in an old-growth beech–oak lowland forest in Northern Spain. Forest Ecology and Management, 182: 175–194. https://doi.org/10.1016/S0378-1127(03)00070-7
 
Schulz M., Mudelsee M. (2002): REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences, 28: 421–426.  https://doi.org/10.1016/S0098-3004(01)00044-9
 
Sharma R.P., Vacek Z., Vacek S. (2016): Modelling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees, 30: 1669–1682. https://doi.org/10.1007/s00468-016-1425-2
 
Sharma R.P., Štefančík I., Vacek Z., Vacek S. (2019): Generalized nonlinear mixed-effects individual tree diameter increment models for beech forests in Slovakia. Forests, 10: 451. https://doi.org/10.3390/f10050451
 
Shumilov O.I., Kasatkina E.A., Mielikainen K., Timonen M., Kanatjev A.G. (2011): Palaeovolcanos, solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years Palaeovolcanos. International Journal of Environmental Research, 5: 855–864.
 
Šimůnek V., Vacek Z., Vacek S., Králíček I., Vančura K. (2019): Growth variability of European beech (Fagus sylvatica L.) natural forests: Dendroclimatic study from Krkonoše National Park. Central European Forestry Journal, 65: 3–11. https://doi.org/10.2478/forj-2019-0010
 
Šimůnek V., Sharma R.P., Vacek Z., Vacek S., Hůnová I. (2020): Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: a forest science from different perspective. European Journal of Forest Research, 139: 999–1013.  https://doi.org/10.1007/s10342-020-01302-7
 
Šimůnek V., Vacek Z., Vacek S., Ripullone F., Hájek V., D’Andrea G. (2021): Tree rings of European beech (Fagus sylvatica L.) indicate the relationship with solar cycles during climate change in central and southern Europe. Forests, 12: 259. https://doi.org/10.3390/f12030259
 
Skomarkova M.V., Vaganov E.A., Mund M., Knohl A., Linke P., Boerner A., Schulze E.D. (2006): Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees, 20: 571–586. https://doi.org/10.1007/s00468-006-0072-4
 
Slanař J., Vacek Z., Vacek S., Bulušek D., Cukor J., Štefančík I., Bílek L., Král J. (2017): Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: dynamics of natural regeneration. Central European Forestry Journal, 63: 212–224. https://doi.org/10.1515/forj-2017-0023
 
Štefančík I., Bošeľa M., Petráš R. (2018a): Effect of different management on quality and value production of pure beech stands in Slovakia. Central European Forestry Journal, 64: 24–32. https://doi.org/10.1515/forj-2017-0012
 
Štefančík I., Vacek Z., Sharma R.P., Vacek S., Rösslová M. (2018b): Effect of thinning regimes on growth and development of crop trees in Fagus sylvatica stands of Central Europe over fifty years. Dendrobiology, 79: 141–155. https://doi.org/10.12657/denbio.079.013
 
Toth D., Maitah M., Maitah K., Jarolínová V. (2020): The impacts of calamity logging on the development of spruce wood prices in Czech forestry. Forests, 11: 283. https://doi.org/10.3390/f11030283
 
Vacek S., Vacek Z., Remeš J., Bílek L., Hůnová I., Bulušek D., Putalová T., Král J., Simon J. (2017): Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees, 31: 1599–1617. https://doi.org/10.1007/s00468-017-1572-0
 
Vacek S., Prokůpková A., Vacek Z., Bulušek D., Šimůnek V., Králíček I., Prausová R., Hájek V. (2019a): Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. Journal of Forest Science, 65: 331–345. https://doi.org/10.17221/82/2019-JFS
 
Vacek Z. (2017): Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal, 63: 23–34. https://doi.org/10.1515/forj-2017-0006
 
Vacek Z., Vacek S., Bílek L., Remeš J., Štefančík I. (2015a): Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology, 73: 33–45.  https://doi.org/10.12657/denbio.073.004
 
Vacek Z., Vacek S., Podrázský V., Bílek L., Štefančík I., Moser W.K., Bulušek D., Král J., Remeš J., Králíček I. (2015b): Effect of tree layer and microsite on the variability of natural regeneration in autochthonous beech forests. Polish Journal of Ecology, 63: 233–246.  https://doi.org/10.3161/15052249PJE2015.63.2.007
 
Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019b): Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129–144. https://doi.org/10.2478/forj-2019-0013
 
Vacek Z., Prokůpková A., Vacek S., Cukor J., Bílek L., Gallo J., Bulušek D. (2020a): Silviculture as a tool to support stability and diversity of forests under climate change: study from Krkonoše Mountains. Central European Forestry Journal, 66: 116–129. https://doi.org/10.2478/forj-2019-0013
 
Vacek Z., Vacek S., Prokůpková A., Bulušek D., Podrázský V., Hůnová I., Putalová T., Král J. (2020b): Long-term effect of climate and air pollution on health status and growth of Picea abies (L.) Karst. peaty forests in the Black Triangle region. Dendrobiology, 83: 1–19. https://doi.org/10.12657/denbio.083.001
 
Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85–93.
 
Wang X., Zhang Q.B. (2011): Evidence of solar signals in tree rings of Smith fir from Sygera Mountain in southeast Tibet. Journal of Atmospheric and Solar-Terrestrial Physics, 73: 1959–1966. https://doi.org/10.1016/j.jastp.2011.06.001
 
WDC-SILSO (2020): Sunspot data from the World Data Center SILSO, Royal Observatory of Belgium, Brussels. Available at: http://www.sidc.be/silso/datafiles
 
Whitcher A.B. (2020): Package ‘waveslim’. Available at: https://cran.r-project.org/web/packages/waveslim/index.html
 
Wigley T.M.L., Briffa K.R., Jones P.D. (1984): On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23: 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
 
Zang C., Buras A., Cecile, J., Mudelsee M., Schulz M., Pucha-cofrep D. (2018): Package ‘dplR‘ R, Dendrochronology Program Library in R Version. Available at: https://r-forge.r-project.org/projects/dplr/
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti