Investigating the variation of diameter and height of Populus sp. clone I-214 under various fertilization treatments in northern Greece – a case study

https://doi.org/10.17221/95/2016-JFSCitation:Stefanou S., Papaioannou A., Seilopoulos D., Papazafeiriou A. (2017): Investigating the variation of diameter and height of Populus sp. clone I-214 under various fertilization treatments in northern Greece – a case study. J. For. Sci., 63: 98-105.
download PDF
The study of young poplar tree characteristics like initial diameter and height as well as mineral fertilization that promotes the rapid growth of trees for biomass production was the aim of this research. In two forest nurseries of northern Greece, the growth of Populus sp. clone I-214 under five fertilization treatments per dosage was studied, i.e. (i) 120 kg (NH4)2SO4·ha–1, (ii) 200 kg (NH4)2SO4·ha–1, (iii) 150 kg (NH4)2SO4·ha–1 and 300 kg mixed fertilizer 11-15-15 (i.e. 11 kg N, 15 kg P2O5 and 15 kg K2O per 100 kg of fertilizer) per ha, (iv) 150 kg (NH4)2SO4·ha–1, 200 kg mixed fertilizer 16-20-0 (i.e. 16 kg N and 20 kg P2O5 per 100 kg of fertilizer) per ha and 100 kg K2SO4·ha–1, (v) no fertilization. Results showed that initial diameter was the variable that had the greatest effect on growth, while the fertilization with 150 kg (NH4)2SO4·ha–1 and 300 kg mixed fertilizer 11-15-15 per ha improved significantly diameter growth. Nevertheless, no specific pattern was found statistically for the best fertilization treatment concerning the height growth of young poplar trees. These findings could be taken into account for the best management practices for rapid poplar tree growth and biomass production under similar edaphoclimatic Mediterranean conditions.
References:
Alexandris S. (1971): Soil and climatic problems of orthological poplar cultivation. The Forest, 53: 48–54. (in Greek)
 
Arias Navarro C. (2011): Production of biomass from short rotation coppice for energy use: Comparison between Sweden and Spain. [MSc Thesis.] Uppsala, Swedish University of Agricultural Sciences: 32.
 
Berthelot Alain, Ranger Jacques, Gelhaye Dominique (2000): Nutrient uptake and immobilization in a short-rotation coppice stand of hybrid poplars in north-west France. Forest Ecology and Management, 128, 167-179 https://doi.org/10.1016/S0378-1127(99)00145-0
 
Bockheim J. G., Leide J. E., Tavella D. S. (1986): Distribution and cycling of macronutrients in a Pinusresinosa plantation fertilized with nitrogen and potassium. Canadian Journal of Forest Research, 16, 778-785 https://doi.org/10.1139/x86-138
 
Bouyoucos George John (1962): Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agronomy Journal, 54, 464- https://doi.org/10.2134/agronj1962.00021962005400050028x
 
Byrd A.G. (2013): Evaluating short rotation poplar biomass on an experimental land-fill cap near Anchorage, Alaska. [MSc Thesis.] Fairbanks, University of Alaska: 49.
 
Cañellas I., Huelin P., Hernández M.J., Ciria P., Calvo R., Gea-Izquierdo G., Sixto H. (2012): The effect of density on short rotation Populus sp. plantations in the Mediterranean area. Biomass and Bioenergy, 46, 645-652 https://doi.org/10.1016/j.biombioe.2012.06.032
 
Cole Dale W., David Ford E., Turner John (1990): Nutrients, moisture and productivity of established forests. Forest Ecology and Management, 30, 283-299 https://doi.org/10.1016/0378-1127(90)90143-Y
 
DICKMANN D (2006): Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass and Bioenergy, 30, 696-705 https://doi.org/10.1016/j.biombioe.2005.02.008
 
Duryea M.L. (1984): Nursery cultural practices: Impacts on soil quality. In: Duryea M.L., Landis T.D. (eds): Forest Nursery Manual: Production of Bareroot Seedlings. The Hague, Martinus Nijhoff/Dr W. Junk Publishers: 143–164.
 
Fiedler H.J., Nebe W., Hoffmann F. (1973): Forstliche Pfanzenernährung und Düngung. Stuttgart, G. Fischer Verlag: 481.
 
Grant E.G. (1982): Exchangeable cations. In: Page A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Madison, American Society of Agronomy and Soil Science Society of America: 159–164.
 
Gurgel A. (2011): Ergebnisse der Versuche mit schnellwachsenden Baumarten nach 18 Jahren Bewirtschaftung in Gülzow. In: Tagungsband 5. Rostocker Bioenergieforum, Rostock, Nov 2–3, 2011: 69–75.
 
Hjelm Birger, Mola-Yudego Blas, Dimitriou Ioannis, Johansson Tord (2015): Diameter–Height Models for Fast-growing Poplar Plantations on Agricultural Land in Sweden. BioEnergy Research, 8, 1759-1768 https://doi.org/10.1007/s12155-015-9628-8
 
IBM (2012): GLM multivariate analysis. Available at https://www.ibm.com/support/knowledgecenter/SSLVMB_21.0.0/com.ibm.spss.statistics.help/idh_glm_multivariate.htm (accessed Apr 16, 2016).
 
Klašnja B., Orlović S., Galić Z., Drekić M., Vasić M., Pilipović A. (2008): Poplar biomass of high density short rotation plantations as raw material for energy production. Wood Research, 53: 27–38.
 
Kostakis S. (2001): Effective use of nutrients from tachyauxetic species for reforestation (poplar plantations). [Ph.D. Thesis.] Thessaloniki, Aristotle University of Thessaloniki: 133. (in Greek)
 
Lazdiņa D., Bārdulis A., Bārdule A., Lazdiņš A., Zeps M., Jansons Ā. (2014): The first three-year development of ALASIA poplar clones AF2, AF6, AF7, AF8 in biomass short rotation coppice experimental cultures in Latvia. Agronomy Research, 12: 543–552.
 
Makeschin F. (1999): Short rotation forestry in Central and Northern Europe – introduction and conclusions. Forest Ecology and Management, 121: 1–7.
 
Mantzanas K., Papanastasis V., Pantera A., Papadopoulos A. (2015): Research and development protocol for Silvoarable Agroforestry Group in Greece. Available at www.agforward.eu/index.php/en/trees-with-arable-crops-and-grassland-in-greece.html?file=files/agforward/documents/WP4_GR_silvoarable_protocol.pdf (accessed June 19, 2016).
 
Nakos George (1979): Fertilization of poplar clones in the nursery. Plant and Soil, 53, 67-79 https://doi.org/10.1007/BF02181880
 
Sadanandan Nambiar E.K., Bowen Glynn D. (1986): Uptake, distribution and retranslocation of nitrogen by Pinus radiata from 15N-labelled fertilizer applied to podzolized sandy soil. Forest Ecology and Management, 15, 269-284 https://doi.org/10.1016/0378-1127(86)90164-7
 
Nelson D.W., Sommers L.E. (1982): Total carbon, organic carbon and organic matter. In: Page A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Madison, American Society of Agronomy and Soil Science Society of America: 539–577.
 
Olsen S.R., Sommers L.E. (1982): Phosphorus. In: Page A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Madison, American Society of Agronomy and Soil Science Society of America: 403–427.
 
Papanastasis V.P., Mantzanas K., Dini-Papanastasi O., Ispi-koudis I. (2009): Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodrigez A., McAdam J., Mosquera-Losada M.R. (eds): Agroforestry in Europe: Current Status and Future Prospects. Dordrecht, Springer Science + Business Media B.V.: 89–109.
 
Rencher A.C., Christensen W.F. (2012): Methods of Multivariate Analysis. 3rd Ed. Hoboken, John Wiley & Sons, Inc.: 800.
 
Rhoades J.D. (1996): Salinity: Electrical conductivity and total dissolved salts. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E. (eds): Methods of Soil Analysis. Part 3. Chemical Methods. Madison, American Society of Agronomy and Soil Science Society of America: 417–435.
 
Singh B. (2001): Influence of fertilization and spacing on growth and nutrient uptake in poplar (Populus deltoides) nursery. Indian Forester, 127: 111–114.
 
Stefanou S., Papazafeiriou A.Z. (2014): The effect of soil physical properties of an Entisol on the growth of young poplar trees (Populus sp.). Bulgarian Journal of Agricultural Science, 20: 807–812.
 
Stevenson F.J. (1982): Nitrogen-organic forms. In: Page A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Madison, American Society of Agronomy and Soil Science Society of America: 625–641.
 
Vukorep I. (1970): Beziehungen zwischen chemischen Bodeneigenschaften und Zuwachs von Schwarzpappeln, ein Beitrag zur ökologischen Bewertung von Bodenuntersuchungsmethoden. Göttingen, Institute of Soil Science: 108.
 
Weih Martin (2004): Intensive short rotation forestry in boreal climates: present and future perspectives. Canadian Journal of Forest Research, 34, 1369-1378 https://doi.org/10.1139/x04-090
 
Willebrand Eva, Verwijst Theo (1993): Population dynamics of willow coppice systems and their implications for management of short-rotation forests. The Forestry Chronicle, 69, 699-704 https://doi.org/10.5558/tfc69699-6
 
download PDF

© 2018 Czech Academy of Agricultural Sciences