Optimization of thermal modification of wood by genetic algorithm and classical mathematical analysis


Hasanagić R. (2022): Optimization of thermal modification of wood by genetic algorithm and classical mathematical analysis. J. For. Sci., 68: 35–45.

download PDF

The use of wood in outdoor conditions is of great importance for the service life of wood, and the process of thermal modification (TM) directly affects the effective value of wood products. This paper presents theoretical and experimental studies of the parameters influencing TM of wood on the changes of its physical and mechanical properties. Experimental studies were performed on thermally modified wood samples for different values of the influential parameters of thermal modification: T (°C), t (h) and ρ (g·cm–3), while the tensile strength was obtained as the output parameter. The obtained experimental data were stochastically modelled and compared with the model obtained by genetic programming. The optimization of processing parameters was performed by classical mathematical analysis and compared with the results obtained by optimization with genetic algorithm. The results of the optimal design parameters obtained by different approaches to optimization were compared and based on that the analysis of the characteristics of the presented techniques was conducted.

Boonstra M. (2008): A two-stage thermal modification of wood. [PhD. Thesis.] Nancy, Université Henri Poincaré-Nancy 1.
Boonstra M.J., Blomberg J. (2007): Semi-isostatic densification of heat-treated radiata pine. Wood Science and Technology, 41: 607–617. https://doi.org/10.1007/s00226-007-0140-y
Boonstra M.J., Tjeerdsma B. (2006): Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff, 64: 204–211. https://doi.org/10.1007/s00107-005-0078-4
Byon S.M., Hwang S.M. (2003): Die shape optimal design in cold and hot extrusion. Journal of Materials Processing Technology, 138: 316–324. https://doi.org/10.1016/S0924-0136(03)00092-X
Esteves B.M., Pereira H.M. (2009): Wood modification by heat treatment: A review. BioResources, 4: 370–404. https://doi.org/10.15376/biores.4.1.Esteves
Esteves B., Graça J., Pereira H. (2008): Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62: 344–351. https://doi.org/10.1515/HF.2008.057
Esteves B., Carmo J., Nunes L. (2014): Commercialisation and production of modified wood in Portugal. In: Nunes L. (ed.): European Conference on Wood Modification, Lisabon, March 10–12, 2014: 1–7.
Gunduz G., Korkut S., Aydemir D., Bekar I. (2009): The density, compressive strength and surface hardness of heat-treated hornbeam (Carpinus betulus L.) wood. Maderas. Ciencia y tecnologia, 11: 61–70.
Hakkou M., Pétrissans M., Zoulalian A., Gérardin P. (2005): Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability, 89: 1–5. https://doi.org/10.1016/j.polymdegradstab.2004.10.017
Hasanagić R.R. (2018): Modeling and prediction of fracture force to tighten solid wood elements by genetic programming. Tehnika , 73: 653–657. https://doi.org/10.5937/tehnika1805653H
Hasanagić R. (2019): Thermal modified wood: A critical review. In: Hodžić A., Islamović F., Mijović B. (eds): RIM 2019 – Development and Modernization of Production, Sarajevo, Sept 10–14, 2019: 2566–3257.
Hasanagić R., Hodžić A., Jurković M. (2020): Modelling and optimization of tensile break force of solid wood elements lengthened by finger joint. Journal of Adhesion Science and Technology, 34: 1013–1027.
Hasanagić R., Ganguly S., Bajramović E., Hasanagić A. (2021): Mechanical properties changes in fir wood (Abies sp.), linden wood (Tilia sp.), and beech wood (Fagus sp.) subjected to various thermal modification process conditions. IOP Conference Series: Materials Science and Engineering, 1208: 012025.
Hodžić A., Hasanagić R. (2017): Matematičko modeliranje sile loma na istezanje masivnog drveta produženog sa zupčastim vezom. In: Jovović A. (ed.): Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, Beograd, Apr 1, 2017: 27. (in Bosnian)
Hrnjica B., Danandeh Mehr A. (2018): Optimized Genetic Programming Applications: Emerging Research and Opportunities. Hershey, IGI Global: 310.
Jurković M. (1999): Matematičko modeliranje inžinjerskih procesa i Sistema. Bihać, Univerzitet u Bihaću-Tehnički fakultet: 52. (in Bosnian)
Jurković Z., Jurković M., Buljan S. (2006): Optimization of extrusion force prediction model using different techniques. Journal of Achievements in Materials and Manufacturing Engineering, 17: 353–357.
Kaboorani A., Englund K.R. (2010): Water sorption and mechanical performance of preheated wood/thermoplastic composites. Journal of Composite Materials, 45: 1423–1433. https://doi.org/10.1177/0021998310382317
Koza J.R. (1992): Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Massachusetts Institute of Technology: 819.
Kržišnik D., Lesar B., Thaler N., Humar M. (2018): Micro and material climate monitoring in wooden buildings in sub-Alpine environments. Construction and Building Materials, 166: 188–195. https://doi.org/10.1016/j.conbuildmat.2018.01.118
Kržišnik D., Grbec S., Lesar B., Plavčak D., Šega B., Šernek M., Straže A., Humar M. (2020): Durability and mechanical performance of differently treated glulam beams during two years of outdoor exposure. Wood Industry, 7: 243–252. https://doi.org/10.5552/drvind.2020.1957
Kuzman K. (2001): Problems of accuracy control in cold forming. Journal of Materials Processing Technology, 113: 10–15. https://doi.org/10.1016/S0924-0136(01)00688-4
Popescu C.M., Jones D., Kržišnik D., Humar M. (2020): Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT–IR spectroscopy and chemometric methods. Journal of Molecular Structure, 1200: 127133. https://doi.org/10.1016/j.molstruc.2019.127133
Reinprecht L. (2016): Wood Deterioration, Protection and Maintenance. Chichester, John Wiley & Sons: 372.
Rep G., Pohleven F. (2001): Wood modification – A promising method for wood preservation. In: Despot R. (ed): International Conference: Wood in construction industry – tradition and future, Zagreb, Apr 25, 2001: 19–26.
Rep G., Pohleven F., Bučar B. (2004): Characteristics of thermally modified wood in vacuum. In: Pohleven F., Petrič M. (eds): Proceedings of the IRG Annual Meeting. Ljubljana, June 6–10, 2004: 45–51.
Schmidt O. (2006): Wood and Tree Fungi: Biology, Damage, Protection, and Use. Berlin, Springer: 334.
Tiemann H.D. (1920): The Kiln Drying of Lumber: A Practical and Theoretical Treatise. Philadelphia, JB Lippincott Company: 318.
Tjeerdsma B.F., Militz H. (2005): Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff, 63: 102–111. https://doi.org/10.1007/s00107-004-0532-8
Tjeerdsma B.F., Stevens M., Militz H. (2000): Durability Aspects of (Hydro)thermal Treated Wood. Stockholm, International Research Group on Wood Preservation: 11.
Tjeerdsma B.F., Boonstra M., Pizzi A., Tekely P., Militz H. (1988): Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56: 149. https://doi.org/10.1007/s001070050287
Van den Bulcke J., De Windt I., Defoirdt N., De Smet J., Van Acker J. (2011): Moisture dynamics and fungal susceptibility of plywood. International Biodeterioration & Biodegradation, 65: 708–716.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti