Effect of structure and dynamics of forests on the occurrence of Erythronium dens-canis

https://doi.org/10.17221/96/2020-JFSCitation:

Vacek S., Linda R., Králíček I., Vančura K., Prokůpková A., Prausová R. (2020): Effect of structure and dynamics of forests on occurrence of Erythronium dens-canis. J. For. Sci., 66: 349–360.

download PDF

The paper presents the results of a study on the impact of forest stand structure and development in 1998 to 2018 on the occurrence of dog’s tooth violets (Erythronium dens-canis L.) in the Medník National Nature Monument, Czech Republic. The research was carried out in mixed European hornbeam and sessile oak stands, herb-rich European beech stands and the Sázava-river Norway spruce ecotype stands. The site and stand characteristics of the following three forest stand types were compared: 1) oak-hornbeam forests, 2) herb-rich beech forests and 3) secondary spruce forests. The results showed that the ratio of sterile and fertile plants was 2.9 to 1. The occurrence of E. dens-canis was higher in older stands with differentiated structure. On the contrary, stands characterized by a higher number of trees and basal area negatively affected the population size of E. dens‑canis. Significantly, the density of E. dens-canis decreased with increasing stand density index (SDI) and increased with increasing diameter differentiation index in relation to tree neighbours (TMd). During the period of 20 years, the E. dens-canis population increased by 40.4% on permanent research plots, while the highest changes were observed on spruce plots (+92.1%) and the lowest increase was in oak-hornbeam forests (+18.0%). The highest numbers of E. dens-canis plants were found in herb-rich beech forests (1 774 plants·ha–1), lower numbers occurred in oak-hornbeam forests (784 plants·ha–1) and minimal in secondary spruce forests (51 plants·ha–1).

References:
Bartha L., Sramkó G., Volkova P.A., Surina B., Ivanov A.L., Banciu H.L. (2015): Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude. Plant Systematics and Evolution, 301: 1747–1758. https://doi.org/10.1007/s00606-014-1190-x
 
Barvířová, O. (1935): Památek v okolí Jílového II. Z Doby vlády keltských Bójů. Vltavské proudy, 14: 7–8.
 
Bošela M., Štefančík I., Petráš R., Vacek S. (2016): The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology, 222: 21–31. https://doi.org/10.1016/j.agrformet.2016.03.005
 
Bílek L., Vacek S., Vacek Z., Remeš J., Král J., Bulušek D., Gallo J. (2016): How close to nature is close-to-nature pine silviculture? Journal of Forest Science, 62: 24–34. https://doi.org/10.17221/98/2015-JFS
 
Bulušek D., Vacek Z., Vacek S., Král J., Bílek L., Králíček I. (2016): Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. Journal of Forest Science, 62: 293–305. https://doi.org/10.17221/22/2016-JFS
 
Clark P.J., Evans F.C. (1954): Distance to nearest neighbour as a measure of spatial relationship in populations. Ecology, 35: 445–453. https://doi.org/10.2307/1931034
 
Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. (2019): Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests, 10: 320. https://doi.org/10.3390/f10040320
 
Čater M., Diaci J. (2017): Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. Forest Ecology and Management, 399: 206–212. https://doi.org/10.1016/j.foreco.2017.05.042
 
DeFries R., Hansen A., Turner B.L., Reid R., Liu J. (2007): Land use change around protected areas: management to balance human needs and ecological function. Ecological Applications, 17: 1031–1038. https://doi.org/10.1890/05-1111
 
del Río M., Condés S., Pretzsch H. (2014): Analyzing size-symmetric vs. size-asymmetric and intra- vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. Forest Ecology and Management, 325: 90–98. https://doi.org/10.1016/j.foreco.2014.03.047
 
Fabrika M., Ďurský J. (2005): Algorithms and software solution of thinning models for SIBYLA growth simulator. Journal of Forest Science, 51: 431–445. https://doi.org/10.17221/4577-JFS
 
Füldner K. (1995): Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern. Göttingen, Dissertation Forstliche Fakultät Göttingen, Cuvillier Verlag: 146.
 
Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., Ruiz-Jaen M.C., Fröberg M., Stendahl J., Philipson C.D., Mikusiński G., Andersson E., Westerlund B., Andrén H., Moberg F., Moen J., Bengtsson J. (2013): Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4: 1340. https://doi.org/10.1038/ncomms2328
 
Götmark F. (2009): Experiments for alternative management of forest reserves: effects of partial cutting on stem growth and mortality of large oaks. Canadian Journal of Forest Research, 39: 1322–1330. https://doi.org/10.1139/X09-045
 
Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. Preslia, 84: 631–645.
 
Guitián P., Medrano M., Guitián J. (2002): Seed dispersal in Erythronium dens-canis L. (Liliaceae): variation among habitats in a myrmecochorous plant. Plant Ecology, 169: 171–177. https://doi.org/10.1023/A:1026043411357
 
Hendrych R. (2004): Erythronium dens-canis a jeho historie v Čechách. Zprávy České botanické společnosti, 39: 185–216.
 
Hájek V., Vacek Z., Vacek S., Bílek L., Prausová R., Linda R., Bulušek D., Králíček I. (2020): Changes in diversity of protected scree and herb-rich beech forest ecosystems over 55 years. Central European Forestry Journal, 66: in press.
 
Holub J., Procházka F. (2000): Red list of vascular plants of the Czech Republic – 2000. Preslia, 72: 187–230.
 
Jaehne S.C., Dohrenbusch A. (1997): Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Centralblatt, 116: 333–345. https://doi.org/10.1007/BF02766909
 
Kochjarová J., Turis P., Blanár D., Hrivnák R., Kliment J. & Vlčko J. (2004): Cievnaté rastliny Muránskej planiny. Reussia, Suppl., 1: 83–182.
 
Králíček I., Vacek Z., Vacek S., Remeš J., Bulušek D., Král J. Štefančík I., Putalová T. (2017): Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77: 119–137. https://doi.org/10.12657/denbio.077.010
 
Krejčí F., Vacek S., Bílek L., Mikeska M., Hejcmanová P., Vacek Z. (2013): The effects of climatic conditions and forest site types on disintegration rates in Picea abies occurring at the Modrava Peat Bogs in the Šumava National Park. Dendrobiology, 70: 35–44. https://doi.org/10.12657/denbio.070.004
 
Lepš J., Šmilauer P. (2003): Multivariate Analysis of Ecological Data using CANOCO. Cambridge, Cambridge University Press: 269.
 
Ložek V., Kubíková J., Špryňar P. (2005): Střední Čechy. In: Mackovčin P., Sedláček M. (eds): Chráněná území ČR, svazek XIII., Brno, Praha, AOPK ČR a EkoCentrum: 902.
 
Ložek V. (2007): Zrcadlo minulosti. Česká a slovenská krajina v kvartéru. Praha, Dokořán: 216.
 
Malíček J. (2005): Lichens of Medník National Nature Monument in the Sázava River valley (Central Bohemia). Bryonora, 55: 46–55.
 
Mina M., del Río M., Huber M.O., Thürig E., Rohner B. (2018): The symmetry of competitive interactions in mixed Norway spruce, silver fir and European beech forests. Journal of Vegetation Science, 29: 775–787. https://doi.org/10.1111/jvs.12664
 
Mondoni A., Rossi G., Probert R. (2012): Temperature controls seed germination and dormancy in the European woodland herbaceous perennial Erythronium dens-canis (Liliaceae). Plant Biology, 14: 475-480. https://doi.org/10.1111/j.1438-8677.2011.00517.x
 
Müllerova J., Hédl R., Szabó P. (2015): Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecology and Management, 343: 88–100. https://doi.org/10.1016/j.foreco.2015.02.003
 
Nagy T., Pfliegler W.P., Takács A., Tökölyi J., Molnár A. (2019): Distribution, infection rates and DNA barcoding of Uromyces erythronii (Pucciniaceae), a parasite of Erythronium (Liliaceae) in Europe. Willdenowia, 49: 13–20. https://doi.org/10.3372/wi.49.49103
 
Paillet Y., Bergès L., Hjältén J., Ódor, P., Avon, C., Bernhardt-Römermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Segastiá M.T., Schmidt W., Standovár T., Tothmérész B., Uotila A., Valladares F., Vellak K., Viranen R. (2010): Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conservation Biology, 24: 101–112.  https://doi.org/10.1111/j.1523-1739.2009.01399.x
 
Petráš R., Pajtík J. (1991): Sústava česko-slovenských objemových tabuliek drevín. Lesnický časopis, 37: 49–56.
 
Petritan A.M., Biris I.A., Merce O., Turcu D.O. Petritan I.C. (2012): Structure and diversity of a natural temperate sessile oak (Quercus petraea L.) – European Beech (Fagus sylvatica L.) forest. Forest Ekology and Management, 280: 140–149.  https://doi.org/10.1016/j.foreco.2012.06.007
 
Pielou E.C. (1975): Ecological Diversity. New York, Wiley: 165.
 
Pivničková M., Pecina P. (1980): Příspěvek k autekologii kandíku psího zubu (Erythronium dens-canis L.) ve státní přírodní rezervaci Medník. Ochrana přírody, 1: 207–229.
 
Pretzsch H. (2009): Forest dynamics, growth and yield. Berlin, Heidelberg, Springer: 223–290.
 
Prokůpková A., Vacek Z., Vacek S., Blažejová J., Schwarz O., Bulušek D. (2020): Dynamics of natural regeneration of mountain forests after wind disturbance: Model study for the krkonose mts. (Czech Republic). Zprávy lesnického výzkumu, 65: 72–81.
 
Pupillo P., Astuti, G. (2017): Population structure of Erythronium dens-canis L. (Liliaceae) in the northern Apennines (Italy). Italian Botanist, 4: 1–14. https://doi.org/10.3897/ib.4.12439
 
Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and chmate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65: 21–33.
 
Pyšek P., Sádlo J., Mandák B. (2002): Catalogue of alien plants of the Czech Republic. Preslia, 74: 37–186.
 
R Core Team (2018): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
 
Rozas V. (2003): Regeneration patterns, dendroecology, and forest-use history in an old-growth beech–oak lowland forest in Northern Spain. Forest Ekology and Management, 182: 175–194. https://doi.org/10.1016/S0378-1127(03)00070-7
 
Růžička J. (1927): Kandík – Erythronium dens-canis. – Lesnická práce, 6: 232–233.
 
Sádlo J. (2009): Erythronium dens-canis in Bohemia: can we accept its native origin? Zprávy České botanické společnosti, 44: 1–10.
 
Seidl R., Spies T.A., Peterson, D.L., Stephens S.L., Hicke J.A. (2016): Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 53: 120–129. https://doi.org/10.1111/1365-2664.12511
 
Shannon C.E. (1948): A mathematical theory of communications. Bell System Technical Journal, 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
 
Slanař J., Vacek Z., Vacek S., Bulušek D., Cukor J., Štefančík I., Bílek L., Král J. (2017): Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: dynamics of natural regeneration. Central European Forestry Journal, 63: 213–225. https://doi.org/10.1515/forj-2017-0023
 
Spitzer L., Konvička M., Beneš J., Tropek R., Tuf I.H., Tufová J. (2008): Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biological Conservation, 141: 827–837. https://doi.org/10.1016/j.biocon.2008.01.005
 
Stewart J.R., Lister A.M. (2001): Cryptic northern refugia and the origins of modern biota. Trends in Ecology & Evolution, 16: 608–613.
 
Šimůnek V., Vacek Z., Vacek S., Králíček I., Vančura K. (2019): Growth variability of European beech (Fagus sylvatica L.) natural forests : Dendroclimatic study from Krkonoše National Park. Central European Forestry Journal, 65: 3–11. https://doi.org/10.2478/forj-2019-0010
 
Šimůnek V., Sharma R.P., Vacek Z., Vacek S., Hůnová I. (2020): Sunspot area as unexplored trend inside radial growth of European beech in Krkonoše Mountains: a forest science from different perspective. European Journal of Forest Research, 1–15.
 
Tolasz R., Míková T., Valeriánová T., Voženílek V. (eds.) (2007): Climate atlas of Czechia. Olomouc, Czech Hydrometeorological Institute and Palacký University, 256.
 
Toth D., Maitah M., Maitah K., Jarolínová V. (2020): The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests, 11: 283. https://doi.org/10.3390/f11030283
 
Vacek S., Vacek Z., Podrázský V., Bílek L., Bulušek D., Štefančík I., Remeš J., Štícha V., Ambrož R. (2014): Structural Diversity of Autochthonous Beech Forests in Broumovske Steny Austrian Journal of Forest Science. Austrian Journal of Forest Science, 131: 191–214.
 
Vacek S., Vacek Z., Bulušek D., Bílek L., Schwarz O., Simon J., Štícha V. (2015): The role of shelterwood cutting and protection against game browsing for the regeneration of silver fir. Austrian Journal of Forest Science, 132: 81–102.
 
Vacek S., Vacek Z., Ulbrichová I., Bulušek D., Prokůpková A., Král J., Vančura, K. (2019a): Biodiversity dynamics of differently managed lowland forests left to spontaneous development in Central Europe. Austrian Journal of Forest Science, 136: 249–282.
 
Vacek Z. (2017): Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal, 63: 23–34. https://doi.org/10.1515/forj-2017-0006
 
Vacek Z., Vacek S., Bílek L., Král J., Remeš J., Bulušek D., Králíček I. (2014): Ungulate Impact on Natural Regeneration in Spruce-Beech-Fir Stands in Černý důl Nature Reserve in the Orlické Hory Mountains, Case Study from Central Sudetes. Forests, 5: 2929–2946. https://doi.org/10.3390/f5112929
 
Vacek Z., Vacek S., Podrázský V., Bílek L., Štefančík I., Moser W.K., Bulušek D., Král J., Remeš J., Králíček I. (2015): Effect of tree layer and microsite on the variability of natural regeneration in autochthonous beech forests. Polish Journal of Ecology, 63: 233–246.  https://doi.org/10.3161/15052249PJE2015.63.2.007
 
Vacek Z., Vacek S., Bílek L., Král J., Ulbrichová I., Simon J., Bulušek D. (2018): Impact of applied silvicultural systems on spatial pattern of hornbeam-oak forests. Central European Forestry Journal, 64: 33–45. https://doi.org/10.1515/forj-2017-0031
 
Vacek Z., Vacek S., Slanař J., Bílek L., Bulušek D., Štefančík I., Králíček I., Vančura K. (2019b): Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65: 129–144.
 
Vacek Z., Prokůpková A., Vacek S., Cukor J., Bílek L., Gallo J., Bulušek D. (2020): Silviculture as a tool to support stability and diversity of forests under climate change: study from Krkonoše Mountains. Central European Forestry Journal, 66: 116–129.
 
Vorel O. (1990a): Kandík psí zub. Zpravodaj ochrany přírody okresu Praha-západ, 11: 6.
 
Vorel O. (1990b): Evidence kandíku v SPR Medník. Zpravodaj ochrany přírody okresu Praha-západ, 11: 85–86.
 
Waldhauser J. (1988): Keltské rýžování zlata na Jílovsku – mýtus, nebo realita? Rozpravy Národního technického muzea v Praze 20: 7–30.
 
Waldhauser, J. (1995): Celtic gold in Bohemia. In Prehistoric Gold in Europe. Dordrecht, Springer: 577–596.
 
Zahradník D., Vacek S., Bílek L., Nosková I., Vacek Z. (2010): Horizontal structure of forest stands on permanent research plots in the Krkonoše Mts. and its development. Journal of Forest Science, 56: 531–540. https://doi.org/10.17221/126/2010-JFS
 
Zang C., Hartl-Meier C., Dittmar C., Rothe A., Menzel A. (2014): Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology, 20: 3767–3779. https://doi.org/10.1111/gcb.12637
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti