Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation

https://doi.org/10.17221/99/2016-JFSCitation:Rostamikia Y., Tabari Kouchaksaraei M., Asgharzadeh A., Rahmani A. (2017): Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation. J. For. Sci., 63: 219-226.
download PDF
Mycorrhizal fungi form mutualistic symbioses with the roots of 80% of plants which increase growth and nutrient uptake for the host plants. This research was conducted to determine the effect of individual Glomus intraradices Schenck & Smith and Trichoderma harzianum Rifai species on the root colonization, biomass allocation, physiological characteristics and nutrient uptake of hazelnut (Corylus avellana Linnaeus) seedlings in the nursery. The results showed that both G. intraradices and T. harzianum improved biomass, physiological characteristics and nutrient uptake of hazelnut seedlings as well as simultaneous root colonization. However, the growth rate for G. intraradices treatment was significantly higher than that for T. harzianum treatment. The highest leaf dry mass (2.66 g), root dry mass (3.39 g), root volume (11.31 cm3), total plant dry weight (11.20 g) were detected in seedlings inoculated with G. intraradices. Inoculation with G. intraradices and T. harzianum increased net photosynthesis (64 and 26%), stomatal conductance (66.1 and 31.4%) and water use efficiency (50 and 22%). Both G. intraradices and T. harzianum showed increased nutrient accumulation. The G. intraradices treatment resulted in the most efficient nutrient absorption with increases of 58.4% (N), 85.2% (P) and 83.2% (K) in plants. It can be deduced that although G. intraradices in comparison with T. harzianum more favourably affected the growth and leaf gas exchange as well as nutrient uptake of hazelnut seedlings, it can be suggested that the inoculation of hazelnut roots with both arbuscular mycorrhizal fungi is a proper measure to produce the healthy and strong seedlings of this species in the nursery.
References:
Adams P., De-Leij F. A. A. M., Lynch J. M. (2007): Trichoderma harzianum Rifai 1295-22 Mediates Growth Promotion of Crack Willow (Salix fragilis) Saplings in Both Clean and Metal-Contaminated Soil. Microbial Ecology, 54, 306-313  https://doi.org/10.1007/s00248-006-9203-0
 
Ahangar M.A., Dar G.H., Bhat Z.A. (2012): Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Annals of Forest Research, 55: 217–227.
 
Alasalvar Cesarettin, Shahidi Fereidoon, Liyanapathirana Chandrika M., Ohshima Toshiaki (2003): Turkish Tombul Hazelnut ( Corylus avellana L.). 1. Compositional Characteristics. Journal of Agricultural and Food Chemistry, 51, 3790-3796  https://doi.org/10.1021/jf0212385
 
Alguacil M., Caravaca F., Díaz-Vivancos P., Hernández J. A., Roldán A. (2006): Effect of Arbuscular Mycorrhizae and Induced Drought Stress on Antioxidant Enzyme and Nitrate Reductase Activities in Juniperus oxycedrus L. Grown in a Composted Sewage Sludge-amended Semi-arid Soil. Plant and Soil, 279, 209-218  https://doi.org/10.1007/s11104-005-1238-3
 
Artursson Veronica, Finlay Roger D., Jansson Janet K. (2006): Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1-10  https://doi.org/10.1111/j.1462-2920.2005.00942.x
 
Berruti Andrea, Lumini Erica, Balestrini Raffaella, Bianciotto Valeria (2016): Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Frontiers in Microbiology, 6, -  https://doi.org/10.3389/fmicb.2015.01559
 
Berta G., Trotta A., Fusconi A., Hooker J. E., Munro M., Atkinson D., Giovannetti M., Morini S., Fortuna P., Tisserant B., Gianinazzi-Pearson V., Gianinazzi S. (1995): Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiology, 15, 281-293  https://doi.org/10.1093/treephys/15.5.281
 
Bisht R., Chaturvedi S., Srivastava R., Sharma A.K., Johri B.N. (2009): Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Tropical Ecology, 50: 231–242.
 
Bombeli J., Zuccherelli G., Zuccherelli S., Capaccio V. (2002): An investigation of vegetation types and plantation structural with hazelnut, oak, and beach in Caldra, Italy. Malaysian Forester, 66: 58–69.
 
Bradstreet R.B. (1965): The Kjeldahl Method for Organic Nitrogen. New York, Academic Press, Inc.: 239.
 
Caravaca F., Alguacil M.M., Barea J.M., Roldán A. (2005): Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biology and Biochemistry, 37, 227-233  https://doi.org/10.1016/j.soilbio.2004.06.019
 
Chanway C.P. (1997): Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Science, 43: 99–112.
 
Choi D. S., Quoreshi A. M., Maruyama Y., Jin H. O., Koike T. (2005): Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations. Photosynthetica, 43, 223-229  https://doi.org/10.1007/s11099-005-0037-7
 
Domínguez-Núez José, Muñz Daniel, de la Cruz Ana, Saiz de Omeñaca José (2013): Effects of Pseudomonas fluorescens on the Water Parameters of Mycorrhizal and Non-Mycorrhizal Seedlings of Pinus halepensis. Agronomy, 3, 571-582  https://doi.org/10.3390/agronomy3030571
 
DUTT SUNIL, SHARMA SOM DEV, KUMAR PRAMOD (2013): INOCULATION OF APRICOT SEEDLINGS WITH INDIGENOUS ARBUSCULAR MYCORRHIZAL FUNGI IN OPTIMUM PHOSPHORUS FERTILIZATION FOR QUALITY GROWTH ATTRIBUTES. Journal of Plant Nutrition, 36, 15-31  https://doi.org/10.1080/01904167.2012.732648
 
EK M., LJUNGQUIST P. O., STENSTROM ELNA (1983): INDOLE-3-ACETIC ACID PRODUCTION BY MYCORRHIZAL FUNGI DETERMINED BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY. New Phytologist, 94, 401-407  https://doi.org/10.1111/j.1469-8137.1983.tb03454.x
 
Estaun V., Camprubi A., Calvet C., Pinochet J. (2003): Nursery and field response of olive trees inoculated with two ar-buscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. Journal of the American Society for Horticultural Science, 128: 767–773.
 
GIOVANNETTI M., MOSSE B. (1980): AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist, 84, 489-500  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
 
Harman Gary E., Howell Charles R., Viterbo Ada, Chet Ilan, Lorito Matteo (2004): Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56  https://doi.org/10.1038/nrmicro797
 
Hermosa R., Viterbo A., Chet I., Monte E. (): Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17-25  https://doi.org/10.1099/mic.0.052274-0
 
Jackson M.L. (1973): Soil Chemical Analysis. New Delhi, Prentice-Hall of India Pvt. Ltd.: 521.
 
Lu Nan, Zhou Xia, Cui Ming, Yu Meng, Zhou Jinxing, Qin Yongsheng, Li Yun (2015): Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions. Forests, 6, 734-747  https://doi.org/10.3390/f6030734
 
Mielke M., Schaffer B. (2009): Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany, 12: 24–31.
 
Mirabelli C., Tullio M., Pierandrei F., Rea E. (2009): EFFECT OF ARBUSCULAR MYCORRHIZAL FUNGI ON MICROPROPAGATED HAZELNUT (CORYLUS AVELLANA L.) PLANTS. Acta Horticulturae, , 467-472  https://doi.org/10.17660/ActaHortic.2009.812.67
 
Mirzaei J. (2014): Effects of Glomus mosseae, G. intraradices and Gigaspora gigantea mycorrhizal fungi on growth and nutrient absorption in Cercis griffithii L. seedlings. Iranian Journal of Plant Biology, 6: 143–155.
 
Nelson R.E. (1982): Carbonate and gypsum. In: Page A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbio-logical Properties. 2nd Ed. Madison, American Society of Agronomy, Inc., Soil Science Society of America, Inc.: 181–197.
 
Ortega U., Dunabeitia M., Menendez S., Gonzalez-Murua C., Majada J. (2004): Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiology, 24, 65-73  https://doi.org/10.1093/treephys/24.1.65
 
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-IN18  https://doi.org/10.1016/S0007-1536(70)80110-3
 
Querejeta José Ignacio, Barea José Miguel, Allen Michael F., Caravaca Fuensanta, Roldán Antonio (2003): Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia, 135, 510-515  https://doi.org/10.1007/s00442-003-1209-4
 
Quoreshi A.M., Khasa D.P. (2008): Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass and Bioenergy, 32, 381-391  https://doi.org/10.1016/j.biombioe.2007.10.010
 
Roohbakhsh H., Davarynejad G.H. (2013): How addition of Trichoderma would affect further growth of jujube cuttings. International Journal of Agriculture and Crop Sciences, 613: 905–912.
 
Sharma A. K., Johri B. N., Gianinazzi S. (1992): Vesicular-arbuscular mycorrhizae in relation to plant disease. World Journal of Microbiology & Biotechnology, 8, 559-563  https://doi.org/10.1007/BF01238788
 
Smith S.E., Reid D. (1997): Mycorrhizal Symbiosis. 2nd Ed. London, Academic Press: 605.
 
Smith Sally E., Smith F. Andrew (2011): Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 62, 227-250  https://doi.org/10.1146/annurev-arplant-042110-103846
 
Smith Sally E., Facelli Evelina, Pope Suzanne, Andrew Smith F. (2010): Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326, 3-20  https://doi.org/10.1007/s11104-009-9981-5
 
Talbi Z., Chliyeh M., Mouria B., El Asri A., Ait Aguil F., Quazzani Touhami A., Benkirane R., Douira A. (2016): Effect of double inoculation with endomycorrhizae and Trichoderma harzianum on the growth of carob plants. International Journal of Advances in Pharmacy, Biology and Chemistry, 5: 44–58.
 
Windham M. T. (1986): A Mechanism for Increased Plant Growth Induced by Trichoderma spp.. Phytopathology, 76, 518-  https://doi.org/10.1094/Phyto-76-518
 
Wright D.P., Scholes J.D., Read D.J. (1998): Effects of VA mycorrhizal colonization on photosynthesis and biomass pro-duction of Trifolium repens L. Plant, Cell & Environment, 21: 209–216.
 
Wu Q.S., Li G.H, Zou Y.N. (2011): Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedling. Journal of Animal and Plant Sciences, 21: 746–750.
 
Yu Xuan, Liu Xu, Zhu Tian-hui (2014): Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria. ScienceAsia, 40, 21-  https://doi.org/10.2306/scienceasia1513-1874.2014.40.021
 
Zhang X., Wu N., Li C. (2005): Physiological and growth responses of Populus davidiana ecotypes to different soil water contents. Journal of Arid Environments, 60, 567-579  https://doi.org/10.1016/j.jaridenv.2004.07.008
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti